
Graph augmentations are key in the graph learning pipeline, and are used to:
▪ improve the generalization of the model by generating new samples.
▪ improve the connectivity and information �ow in a graph.
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Half-Hop boosts the performance of di�erent models, across various benchmarks.

     In the heterophilic setting, 
Half-Hop added on top of 
vanilla models, leads to 
signi�cant improvements.
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▪Augmentations are used to 
perturb the graph, mainly by 
removing edges or masking 
node features.
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     More rounds of message passing can be performed before we observe over-smoothing. 
     The basin of low error solutions is widened, and in some cases, Half-Hop improves generalization. 

Experiment. We report the test mean squared error (MSE) for a node regression task as a function of the 
number of message passing steps, when using a linear GNN.

#apply augmentation
transform = HalfHop(alpha=0.5)
data = transform(data)

#feedforward
y = model(data)

#get rid of slow nodes 
y = y[~data.slow_node_mask]

Co
de

Half-Hop is plug-and-play, and works with a wide range of 
datasets, architectures, and learning objectives!

When we apply it probabilistically, Half-Hop introduces 
variable path lengths between nodes

Results: Self-Supervised

    We �nd that improvements are most signi�cant for heterophilic nodes.

Receptive �eld

Half-Hop Improves Message Passing

Half-Hop alters the receptive �eld 
and allows for deeper models
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Can upsampling 
improve message 

passing?

Add new pixels Interpolate

Proposed Method Results: Supervised

    Half-Hop can be used as the sole augmentation, or combined with existing 
augmentations to unlock new state-of-the-art performance on self-supervised 
learning benchmarks. 
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When used as an augmentation, Half-Hop creates views where the number of 
hops between nodes varies.

This work introduces Half-Hop, a plug-and-play graph augmentation for message 
passing neural networks.

Motivation
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Experiment. We analyse the 
message passing dynamics 
for a simple linear GNN.

Half-Hop works well across a wide range of applications and across diverse sets of 
graph benchmarks, with impressive boosts in supervised and self-supervised 
settings.

In our analysis of the dynamics of message passing, we �nd that Half-Hop helps to 
avoid oversmoothing and improve generalization.
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tl;dr

Baseline

Half-Hop (train 
+ inference)

Half-Hop (train)

Node features

Learnable weights

Half-Hop can also be used at inference time! 

Where are the bene�ts of Half-Hop coming from?

Message Passing Update

Graph augmentations are also critical in the self-supervised learning pipeline:

Half-Hop signi�cantly improves the performance of MPNNs on heterophilic graphs.

▪Finding augmentations for 
graphs that work well in 
diverse settings is di�cult.


