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Contribution

MESSI (Maximum Entropy Semi-Supervised Inverse re-
inforcement learning)
• is a novel algorithm exploiting unsupervised
trajectories in apprenticeship learning,

• is a principled integration between MaxEnt-IRL
and semi-supervised learning techniques,

• improves the performance of MaxEnt-IRL and other
SSL baselines,

• is robust to different choices of similarity function
and relatively poor quality unsupervised trajectories.

Background

•Markov decision process (MDP) 〈S,A, r, p〉
• S state space
• A action space
• r : S → R state reward function
• p : S × A→ ∆(S) is the stochastic dynamics

•Stochastic Policy π : S → ∆(A)
•Trajectory ζ = (s1, a1, . . . , aT−1, sT ) is sequence of
states encountered by an agent in a given interval of time.

•Features f : S → Rd
+

•Feature count of a trajectory ζ is fζ = ∑T
t=1 f (st)

•Linear reward ∃θ ∈ Rd such that r(s) = 〈θ, f (s)〉 .
•Expert trajectories Σ∗ = {ζ∗ from expert}, i.e.
realizations of the expert policy.

•The objective of apprenticeship learning is to
recover the reward followed by the expert.

• Ill-posed problem: infinite possible solutions, some
uninteresting or bad.

•Solution: Propose a reward, solve the RL problem,
compare the trajectory obtained with the expert one, and
adjust the reward. Iterate until convergence.

MaxEnt IRL [Ziebart et al., 2008]

Idea: Maximize the log-likelihood of θ given Σ∗

θ∗ = arg max
θ

∑
ξ∈Σ∗

logP (ξ|θ)

At each iteration, repeat
•Compute the probability of trajectories through
maximum entropy principle

P (ζ|θ) ≈ exp(θTfζ)
Z(θ)

T∏
t=1
p(st+1|st, at),

•Deduce the expected feature count of the current
candidate.

ft =
∑
ζ

P (ζ|θt)fζ =
∑
s∈S

ρt(s)f(s)

•Update the value of θ with a gradient descent step.
Trade-off : MESSI is based on the original MaxEnt IRL
and do not use the Causal Entropy version to preserve a low
computational complexity.
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•Problem: expert trajectories are expensive to get or not
available

•Solution: learn also from unsupervised trajectories and
use the structure in the feature counts.

MESSI

• Integration of unsupervised trajectories in MaxEnt-IRL
using a penalty function reflecting the geometry of the
trajectories, similar to [Erkan and Altun, 2009], but on
the dual problem to preserve a low computational
complexity.

• Set of expert trajectories Σ∗ = {ζi}li=1 and unsupervised
trajectories Σ̃ = {ζj}uj=1.

•Use a similarity function s to measure the distance
s(ζ, ζ ′) between any pair of trajectories (ζ, ζ ′).

•The pairwise penalty forces similar trajectories to
have similar rewards

R(θ|Σ) = 1
2(l + u)

∑
ζ,ζ ′∈Σ

s (ζ, ζ ′) (θT(fζ − fζ ′))2

•New optimization problem penalizes the likelihood
of θ by the similarity in unsupervised trajectories

θ∗ = argmax
θ

(L(θ|Σ∗)− λR(θ|Σ))

The MESSI Algorithm

1: Input: l expert trajectories Σ∗ = {ζ∗i }li=1, u unsuper-
vised trajectories Σ̃ = {ζj}uj=1, similarity function s,
number of iterations T , constraint θmax, regularizer λ0

2: Initialization:
3: Compute {fζ∗i }li=1, {fζj}uj=1 and f ∗ = 1/l∑l

i=1 fζ∗i
4: Generate a random reward vector θ0
5: for t = 1 to T do
6: Compute policy πt−1 from θt−1 (backward pass)

π(a|s; θ) =
∑
ζ∈Σs,a

P (ζ|θ)

7: Compute feature counts ft−1 of πt−1 (forward pass)
ft =

∑
ζ

P (ζ|θt)fζ =
∑
s∈S

ρt(s)f(s)

8: Update the reward vector as follows
θt← θt−1 + (f ∗ − ft−1)

+ λ0

θmax(l + u)
∑
ζ,ζ ′∈Σ

s(ζ, ζ ′)
(
θT
t−1(fζ − fζ ′

)2
).

9: If ‖θt‖∞ > θmax, project back by θt← θt
θmax
‖θt‖∞

10: end for

Discussion

•Not semi-supervised classification: Unsupervised
trajectories come from the expert herself, another
expert(s), near-expert, by agents maximizing different
reward functions, or noisy data.

• Similarity functions is more efficient when hand-crafted
to fit the problem, but still works for baseline like RBF.

• Improves MaxEnt IRL when the similarity function
is meaningful and the distribution of unsupervised
trajectories is informative.

Experimental settings

•Two Benchmarks : Grid World [Abbeel and Ng, 2004]
and Highway Driving [Syed et al., 2008].

•Unlabeled trajectories are drawn from three different
distributions over policies
•Pu∗ = P (·|θ∗) (expert)
•P1 = P (·|θ1) (average quality)
•P2 = P (·|θ2) (very different reward)

•MESSIMAX: MESSI with only near expert unlabeled
trajectories (upper bound for MESSI performance)

•Parameters: MESSI is evaluated with respect to θmax,
λ, the number of iteration, the distribution over unlabeled
trajectories

Results
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Figure 1: Results as a function of number of iterations (left), the distri-
bution µ of the unsupervised data (right), a of the MaxEnt, MESSIMAX
and MESSI on the Highway driving dataset (up) and the gridworld (down)
dataset.

•Number of iterations. MESSI improves at each
iteration (unlike SSIRL). Advantage of MESSIMAX is
clear starting from the beginning.

•Proportion of good unsupervised trajectories.
Non-relevant distribution (as Pµ3) make MESSI performs
worse than MaxEnt-IRL. However, improves quickly with
even a few worthy trajectories.

Comparison with EM baseline

•SSIRL Cannot be compared to
SSIRL [Valko et al., 2012] because it does not have a
stopping criterion

•EM Comparison to semi-supervised baseline inspired by
EM [Zhu, 2005] :
• Maximization step : using belief on nature of
trajectories, solve one iteration of MaxEnt.

• Expectation step: Given the current reward, update
the belief on the nature of the trajectories.
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Figure 2: Comparison between MESSI and EM

Results: For all the respective frequencies of Maximiza-
tion and Expectation steps, EM performs worse than MESSI
(Fig. 2).


