
November 19, 2019 MVA 2019/2020

Graphs in Machine Learning
Michal Valko
DeepMind Paris and Inria Lille

TA: Omar Darwiche Domingues with the help of Pierre Perrault

Partially based on material by: Rob Fergus, Nikhil Srivastava,
Yiannis Koutis, Joshua Batson, Daniel Spielman



Last Lecture

I Online semi-supervised learning
I Online incremental k-centers
I Examples of applications of online SSL
I Analysis of online SSL
I SSL Learnability
I When does graph-based SSL provably help?
I Scaling harmonic functions to millions of samples

Michal Valko – Graphs in Machine Learning DeepMind - 2/53



Previous Lab Session

I 12. 11. 2019 by Omar (+Pierre)
I Content

I Semi-supervised learning
I Graph quantization
I Offline face recognizer

I Short written report
I Public questions to piazza
I Deadline: 26. 11. 2019

Michal Valko – Graphs in Machine Learning DeepMind - 3/53



Next Lab Session/Lecture

I 26. 11. 2019 by Marc
I 4. 12. 2019 - 14h30-16h30 by Omar (+ Pierre)
I Content: Graph nets

Michal Valko – Graphs in Machine Learning DeepMind - 4/53



Final class projects

I detailed description on the class website
I preferred option: you come up with the topic
I theory/implementation/review or a combination
I one or two people per project (exceptionally three)
I grade 60%: report + short presentation of the team
I deadlines

I 19. 11. 2019 - strongly recommended DL TODAY!
I 26. 11. 2019 - hard DL for taking projects
I 07. 01. 2020 - submission of the project report
I 13. 01. 2020 or later - project presentation

I list of suggested topics on piazza

Michal Valko – Graphs in Machine Learning DeepMind - 5/53



Huge G
when G does not fit to memory
…or when we can’t invert L



Sparsify G
with no assumptions
…and we need to process is anyway



Large scale Machine Learning on Graphs

http://blog.carsten-eickhoff.com Botstein et al.

Michal Valko – Graphs in Machine Learning DeepMind - 8/53

http://blog.carsten-eickhoff.com


Are we large yet?

”One trillion edges: graph processing at Facebook-scale.”
Ching et al., VLDB 2015

Michal Valko – Graphs in Machine Learning DeepMind - 9/53



Computational bottlenecks

In theory:
Space Time

[O(m),O(n2)] to store O(n2) to construct
O(n3) to run algorithms

In practice:
I 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB)
128 Billion edges (331 GB)

I Pagerank on Facebook Graph:
3 minutes per iteration, hundreds of iterations, tens of hours
on 200 machines, run once per day

Michal Valko – Graphs in Machine Learning DeepMind - 10/53



Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph

Michal Valko – Graphs in Machine Learning DeepMind - 11/53



Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?

Michal Valko – Graphs in Machine Learning DeepMind - 12/53



Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation

Michal Valko – Graphs in Machine Learning DeepMind - 13/53



Storing graph in memory

Main bottleneck: space.
As a Fermi (back-of-the-envelope) problem
I Storing a graph with m edges require to store m tuples

(i , j,wi,j) of 64 bit (8 bytes) doubles or int.
I For standard cloud providers, the largest compute-optimized

instances has 36 cores, but only 60 GB of memory.
I We can store 60 ∗ 10243/(3 ∗ 8) ∼ 2.6× 109 (2.6 billion)

edges in a single machine memory.

Michal Valko – Graphs in Machine Learning DeepMind - 14/53



Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines
Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later

Michal Valko – Graphs in Machine Learning DeepMind - 15/53



Graph Sparsification

Goal: Get graph G and find sparse H

Michal Valko – Graphs in Machine Learning DeepMind - 16/53



Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not

Michal Valko – Graphs in Machine Learning DeepMind - 17/53



Graph Sparsification: What is good sparse?
Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 18/53

https://math.berkeley.edu/~nikhil/


Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges

Michal Valko – Graphs in Machine Learning DeepMind - 19/53



Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)

Michal Valko – Graphs in Machine Learning DeepMind - 20/53



Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈

n
d

Could be large :( What to do?

Michal Valko – Graphs in Machine Learning DeepMind - 21/53



Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈ 1

Benczúr & Karger: Can find such H quickly for any G!

Michal Valko – Graphs in Machine Learning DeepMind - 22/53



Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLHf ≤ fTLG f ≤ (1 + ε)fTLHf

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier

Michal Valko – Graphs in Machine Learning DeepMind - 23/53



Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLHf ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖

Michal Valko – Graphs in Machine Learning DeepMind - 24/53



Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 25/53

https://math.berkeley.edu/~nikhil/


Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides

Michal Valko – Graphs in Machine Learning DeepMind - 26/53



Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

Decomposition of identity: ∀u (unit vector):
∑

e∈E (uTve)
2 = 1

moment ellipse is a sphere
https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 27/53

https://math.berkeley.edu/~nikhil/


Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

We take a subset of these ees and scale them!

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 28/53

https://math.berkeley.edu/~nikhil/


Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 29/53

https://math.berkeley.edu/~nikhil/


Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 30/53

https://math.berkeley.edu/~nikhil/


Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 31/53

https://math.berkeley.edu/~nikhil/


Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!

Michal Valko – Graphs in Machine Learning DeepMind - 32/53



Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ

(∑
e

sevevT
e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pis!

Michal Valko – Graphs in Machine Learning DeepMind - 33/53



Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:
use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large

Michal Valko – Graphs in Machine Learning DeepMind - 34/53



Spectral Graph Sparsification

Chicken and egg problem
We need Reff to compute a sparsifier H

We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with very poor approximation R̃eff and poor sparsifier.
Use R̃eff to compute an improved approximate sparsifier H

Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.

Michal Valko – Graphs in Machine Learning DeepMind - 35/53



What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods
I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods

Michal Valko – Graphs in Machine Learning DeepMind - 36/53



Distributed graph processing

Large graphs do not fit in memory
Get more memory

Either slower but larger memory
Or fast memory but divided among many machines

Many challenges
Needs to be scalable

minimimize pass over data / communication costs
Needs to be consistent

updates should propagate properly

Michal Valko – Graphs in Machine Learning DeepMind - 37/53



Distributed graph processing

Different choices have different impacts: for example splitting the
graph according to nodes or according to edges.

Many computation models (academic and commercial) each with
its pros and cons

MapReduce
MPI
Pregel
Graphlab

Michal Valko – Graphs in Machine Learning DeepMind - 38/53



Graph Spectral Sparsification

Definition ([SS11])

An ε-sparsifier of G is a reweighted subgraph H whose Laplacian LH
satisfies

(1− ε)LG � LH � (1 + ε)LG (1)

Proposition ([SS11; Kyn+16])
There exists an algorithm that can construct an ε-sparsifier
I with only O(n log(n)/ε2) edges
I in O(m log2(n)) time and O(n log(n)/ε2) space
I a single pass over the data

Michal Valko – Graphs in Machine Learning DeepMind - 39/53



Graph Spectral Sparsification in Machine Learning

Laplacian smoothing (denoising): given y , f? + ξ and G compute

min
f∈Rn

(f− y)T(f− y) + λfTLGf (2)

Preproc Time Space
f̂ = (λLG + I)−1y 0 O(m log(n)) O(m)

f̃ = (λLH + I)−1y O(m log2(n)) O(n log2(n)) O(n log(n))

Large computational improvement
accuracy guarantees! [SWT16]

Need to approximate spectrum only up to regularization level λ

Michal Valko – Graphs in Machine Learning DeepMind - 40/53



Ridge Graph Spectral Sparsification

Definition
An (ε, γ)-sparsifier of G is a reweighted subgraph H whose Laplacian LH
satisfies

(1− ε)LG − εγI � LH � (1 + ε)LG + εγI (3)

Mixed multiplicative/additive error
I large (i.e. ≥ γ) directions reconstructed accurately
I small (i.e. ≤ γ) directions uniformly approximated (γI)

Adapted from Randomized Linear Algebra (RLA) community
PSD matrix low-rank approx. [AM15]

RLA → Graph: Improve over O(n log n) exploiting regularization
Graph → RLA: Exploit LG structure for fast (ε, γ)-sparsification

Michal Valko – Graphs in Machine Learning DeepMind - 41/53



How to construct an ε-sparsifier
For complete graphs, sample O(n log(n)) edges uniformly and
reweight

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 42/53

https://math.berkeley.edu/~nikhil/


How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges uniformly?

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 42/53

https://math.berkeley.edu/~nikhil/


How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges uniformly?

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 42/53

https://math.berkeley.edu/~nikhil/


How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges using
effective resistance

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 42/53

https://math.berkeley.edu/~nikhil/


How to construct an (ε, γ)-sparsifier

Definition

γ-effective resistance: re(γ) = bT
e(LG + γI)−1be

Effective dim.: deff(γ) =
∑

e re(γ) =
∑n

i=1
λi(LG)

λi(LG)+γ ≤ n

Can still be computed using fast graph solvers
interpretation as inverse of alternative paths lost

Most existing graph algorithms inapplicable [Kyn+16]
Most existing RLA algorithms too slow [CMM17]

Adapt SOA algorithm for kernel matrix approximation
SQUEAK, [CLV17]

Michal Valko – Graphs in Machine Learning DeepMind - 43/53



DisRe

arbitrarily split in subgraphs that fit in a single machine
recursively merge-and-reduce until one graph left

additive error cumulates!
merge-and-resparsify

Michal Valko – Graphs in Machine Learning DeepMind - 44/53



Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space

Michal Valko – Graphs in Machine Learning DeepMind - 45/53



Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space

Michal Valko – Graphs in Machine Learning DeepMind - 45/53



Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space

Michal Valko – Graphs in Machine Learning DeepMind - 45/53



Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space

Michal Valko – Graphs in Machine Learning DeepMind - 45/53



Merge

Combine sparsifiers, using 2O(deff(γ) log(n)) space

twice as large as necessary

Michal Valko – Graphs in Machine Learning DeepMind - 46/53



Merge-and-Resparsify

Compute p̃(2)
e ∝ min{r̃ (2)e (γ), p̃(1)

e } using fast graph solver
For each edge e sample with probability p̃(2)

e /p̃(1)
e

survival probability p̃(2)
e

p̃(1)
e

p̃(1)
e

survival probability p̃(2)
e

Z
Zp̃(1)

e

Z
Zp̃(1)

e
Michal Valko – Graphs in Machine Learning DeepMind - 47/53



DisRe guarantees

Theorem
Given an arbitrary graph G w.h.p. DisRe satisfies
(1) each sub-graphs is an (ε, γ)-sparsifier
(2) with at most O(deff(γ) log(n)) edges.

Michal Valko – Graphs in Machine Learning DeepMind - 48/53



DisRe guarantees

Space: independent from m O(deff(γ) log(n)) ≤ O(n log(n))

Time: O(deff(γ) log
3(n)) for fully balanced tree

Michal Valko – Graphs in Machine Learning DeepMind - 48/53



DisRe guarantees

Communication: only O(log(n)) rounds
removed edges are forgotten single pass/streaming

point-to-point, centralization only to choose tree

Michal Valko – Graphs in Machine Learning DeepMind - 48/53



Bibliography I

Ahmed El Alaoui and Michael W. Mahoney. “Fast
randomized kernel methods with statistical
guarantees”. In: Neural Information Processing
Systems. 2015.
Daniele Calandriello, Alessandro Lazaric, and
Michal Valko. “Distributed adaptive sampling for kernel
matrix approximation”. In: International Conference on
Artificial Intelligence and Statistics. 2017.
Michael B. Cohen, Cameron Musco, and
Christopher Musco. “Input sparsity time low-rank
approximation via ridge leverage score sampling”. In:
Symposium on Discrete Algorithms. 2017.

Michal Valko – Graphs in Machine Learning DeepMind - 49/53



Bibliography II

Rob Fergus, Yair Weiss, and Antonio Torralba.
“Semi-Supervised Learning in Gigantic Image
Collections”. In: Neural Information Processing
Systems. 2009.
David F Gleich and Michael W Mahoney. “Using Local
Spectral Methods to Robustify Graph-Based Learning
Algorithms”. In: Knowledge Discovery and Data
Mining. 2015.
Rasmus Kyng et al. “A Framework for Analyzing
Resparsification Algorithms”. In: Symposium on
Discrete Algorithms. 2016.

Michal Valko – Graphs in Machine Learning DeepMind - 50/53



Bibliography III

Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.
“Graph evolution: Densification and shrinking
diameters”. In: Knowledge Discovery from Data (Mar.
2007).
Daniel A Spielman and Nikhil Srivastava. “Graph
sparsification by effective resistances”. In: Journal on
Computing 40.6 (2011).
Veeranjaneyulu Sadhanala, Yu-xiang Wang, and
Ryan J Tibshirani. “Graph Sparsification Approaches
for Laplacian Smoothing”. In: International Conference
on Artificial Intelligence and Statistics. 2016.

Michal Valko – Graphs in Machine Learning DeepMind - 51/53



Bibliography IV

Jaewon Yang and Jure Leskovec. “Defining and
evaluating network communities based on
ground-truth”. In: Knowledge and Information Systems
(2015).

Michal Valko – Graphs in Machine Learning DeepMind - 52/53



Michal Valko
contact via Piazza


	References

