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Last Lecture
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Online semi-supervised learning

Online incremental k-centers

Examples of applications of online SSL
Analysis of online SSL

SSL Learnability

When does graph-based SSL provably help?

Scaling harmonic functions to millions of samples
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Previous Lab Session

> 12. 11. 2019 by Omar (+Pierre)
Content

» Semi-supervised learning
» Graph quantization
» Offline face recognizer

v

v

Short written report

v

Public questions to piazza
Deadline: 26. 11. 2019

v
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Next Lab Session/Lecture

> 26.11.2019 by Marc
> 4.12.2019 - 14h30-16h30 by Omar (+ Pierre)
» Content: Graph nets
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Final class projects

detailed description on the class website

preferred option: you come up with the topic
theory/implementation /review or a combination
one or two people per project (exceptionally three)

grade 60%: report + short presentation of the team

vVvyvyVvVvyyypy

deadlines

> 19.11.2019 - strongly recommended DL TODAY!
» 26.11.2019 - hard DL for taking projects

» 07.01.2020 - submission of the project report

» 13.01.2020 or later - project presentation

> list of suggested topics on piazza

Michal Valko — Graphs in Machine Learning DeepMind - 5/53



Huge ¢

when G does not fit to memory

..or when we can't invert L




Sparsify ¢
with no assumptions

..and we need to process is anyway




Large scale Machine Learning on Graphs

http://blog.carsten-eickhoff.com Botstein et al.
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Are we large yet?

Facebook
WhatsApp
Facebook Messenger
QQ
WeChat
QZone
Tumblr
Instagram

Twitter

"One trillion edges: graph processing at Facebook-scale.”
Ching et al., VLDB 2015
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Computational bottlenecks

In theory:
Space Time

O(n?) to construct
2
[O(m), O(n")] to store (’)(n3) to run algorithms

In practice:
» 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB)
128 Billion edges (331 GB)

» Pagerank on Facebook Graph:

3 minutes per iteration, hundreds of iterations, tens of hours
on 200 machines, run once per day
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Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X € R"*9, construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph
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Large scale graph construction

Main bottleneck: time
» Constructing k-nn graph takes O(n?log(n)), too slow

» Constructing ¢ graph takes O(n?), still too slow

» In both cases bottleneck is the same, given a node finding
close nodes (k neighbours or € neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?
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Distance Approximation

Split your data in small subset of close points
Can find efficiently some (not all) of the neighbours.
» lterative Quantization
» KD-Trees — Cover Trees — NN search is O(log /V) per node

» Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation
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Storing graph in memory

Main bottleneck: space.
As a Fermi (back-of-the-envelope) problem

» Storing a graph with m edges require to store m tuples
(i,j,wi ;) of 64 bit (8 bytes) doubles or int.

» For standard cloud providers, the largest compute-optimized
instances has 36 cores, but only 60 GB of memory.

» We can store 60 * 10243 /(3 % 8) ~ 2.6 x 10° (2.6 billion)
edges in a single machine memory.
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Storing graph in memory

But wait a minute
» Natural graphs are sparse.

Ls For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

» | will construct my graph sparse

L. Losing large scale relationship, losing regularization

» | will split my graph across multiple machines
Ls Your algorithm does not know that.

What if it needs nonlocal data? lIterative algorithms?
More on this later
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Graph Sparsification

Goal: Get graph G and find sparse H

G H ©—9
@
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Graph Sparsification: What is sparse?

What does sparse graph mean?
> average degree < 10 is pretty sparse
> for billion nodes even 100 should be ok

P in general: average degree < polylogn

Are all edges important?

in a tree — sure, in a dense graph perhaps not
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Graph Sparsification: What is good sparse?
Good sparse by Benczir and Karger (1996) = cut preserving!

~ ~
\ \

~~
H-
M
—
Q@

09 68

H approximates G well iff VS C V, sum of edges on 45 remains

8S = edges leaving S
https://math.berkeley.edu/~nikhil/
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Graph Sparsification: What is good sparse?

Good sparse by Benczir and Karger (1996) = cut preserving!
Why did they care? faster mincut/maxflow

Recall what is a cut: cutg(S) =2 cs jc5 Wiy

Define G and H are (1 + =)-cut similar when VS
(1 —e)cuty(S) < cutg(S) < (1 + ¢)cutn(S)

Is this always possible? Benczir and Karger (1996): Yes!

Ve 3 (1 + €)-cut similar G with O(nlog n/e?) edges s.t. Ey C E
and computable in O(mlog® n 4+ mlog n/e?) time » nodee. m cazes
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)

How many edges?

|E6| = O(n?) |En| = O(dn)
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Graph Sparsification: What is good sparse?

G=K, H = d-regular (random)

What are the cut weights for any 57

ws(3S) = [S| - [S] wy(6S) ~ 2 -|5] -S|
wg(6S) _n
vVScV: wi(39) N

Could be large :( What to do?
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Graph Sparsification: What is good sparse?
G=K, H = d-regular (random)

What are the cut weights for any S?

wg(6S) = |S] - |S] wh(6S) ~ < 5-15]-|S|
~wg(dS) N
vVScV: wir(59) ~1

Benczir & Karger: Can find such H quickly for any G!
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Graph Sparsification: What is good sparse?

Recall if f € {0,1}" represents S then f'Lsf = cutg(S)
(1 —e)cuty(S) < cutg(S) < (1+ ¢)cuty(S)

becomes
(1 — E)fTLHf < fTLGf < (1 + €)fTLHf

If we ask this only for f € {0,1}" — (1 + £)-cut similar combinatoria

Benczir & Karger (1996)

If we ask this for all f € R" — (1 + =)-spectrally similar

Spielman & Teng (2004)

Spectral sparsifiers are stronger!

but checking for spectral similarity is easier
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Spectral Graph Sparsification

Rayleigh-Ritz gives:

x"Lx xTLx
and  Apax = max
xTx xTx

Amin = Min

What can we say about \;(G) and A\;(H)?
(1 —e)fLef < fLyf < (14 &)f Lgf
Eigenvalues are approximated well!

(1 —=2)Ai(G) < N(H) < (1+2)Xi(G)
Using matrix ordering notation (1 —e)Lg <Ly =< (1 +¢)Lg

As a consequence, arg min, ||Lyx — b|| = argmin, ||[Lgx — bl
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Spectral Graph Sparsification
Let us consider unweighted graphs: w;; € {0,1}

LG_ZWU U_ZLU_Z —6;)(0 beT
ijeE ijeE ecE

We look for a subgraph H

Ly = Zsebebz where s is a new weight of edge e
ecE

"3 )

Lo\

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification
Wewant (1—¢)lg =Ly =(1+¢)Lg

Equivalent, given Lg = ) bcb find s, s.t. Lg = ) _scbeb] < -Lg
ecE ecE

Forget L, given A = Z aca, find s, sit. A < Zseaeaz <Kk-A
ecE eeE

Same as, given | = E vev, find s, s.t. | < E SeVeVg < k- |
ecE ecE

How to get it? v, <+ A-1/2a,

T T o~
Then D cpsevevi = | <= ) rscaca; ~ A

multiplying by Al/2 on both sides
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Spectral Graph Sparsification: Intuition

How does > .. vevi = I look like geometrically?

- : o . . Ty \2
Decomposition of identity: Vu (unit vector): > p(u"ve)” =1
moment ellipse is a sphere

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

[ 0~(n) vectors in R" ]

SeVe

NS —-"

We take a subset of these e.s and scale them!

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!

the blue eigenvalues are between 1 and k
https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?

T T
K, graph ZeeE b.bl =Lg ZeeE vev, =1
/"‘\\ /’-\\
/ \ / \
I 1 I 1
‘\ / ! /
Y \ Y
\N_’ \s_’

It is already isotropic! (looks like a sphere)

rescaling ve = Lfl’rzbe does not change the shape

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

T T
K, graph ZeeE b.b] =L¢ ZeeE vev, = |
—
/ \ - -
1 \ e \\
\ \ '/ \
i NN VX \ 1
N7 %% \ ' \ y
\ S
\ /

The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = Lz;l/zbe doing to the norm?

_ 2 _
vel> = HLGmbe — bIL b = Rer(e)

reminder Reg(e) is the potential difference between the nodes when injecting a unit current
In other words:  Refe(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Regf(e).

Edges with higher R. are more electrically significant!
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Spectral Graph Sparsification

Todo: Given | =) _vev], find a sparse reweighting.

Randomized algorithm that finds s:
» Sample nlog n/e? with replacement p; o ||ve||® (resistances)
» Reweigh: s; = 1/p; (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1—5</\<Zsevevz> <1+¢
@

finer bounds now available

What is the the biggest problem here? Getting the p;s!
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = arg min, |[Lgx — be|| and then R = bIx

Gaussian Elimination (@]

Fast Matrix Multiplication O(n*3")
Spielman & Teng (2004) O
Koutis, Miller, and Peng (2010) O(mlogn)

» Fast solvers for SDD systems:
Ls use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large
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Spectral Graph Sparsification

Chicken and egg problem

We need R to compute a sparsifier H €1
L, We need a sparsifier H to compute Ref

Sampling according to approximate effective resistances
Reff < Reff < aRefr give approximate sparsifier Lg < Ly < aklg

Start with very poor approximation keff and poor sparsifier.

Use kefr to compute an improved approximate sparsifier H <]
Ls Use the sparsifier H to compute improved approximate R

Computing Ref using the sparsifier is fast (m = O(nlog(n))), and
not too many iterations are necessary.
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What can | use sparsifiers for?

» Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

» More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

L, electric circuit, fluid equations, finite elements methods

» Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?

Or if my boss does not trust approximation methods
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Distributed graph processing

Large graphs do not fit in memory

Get more memory

L Either slower but larger memory

Or fast memory but divided among many machines
Many challenges

Needs to be scalable

Ls minimimize pass over data / communication costs
Needs to be consistent

Ls updates should propagate properly
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Distributed graph processing

Different choices have different impacts: for example splitting the
graph according to nodes or according to edges.

Many computation models (academic and commercial) each with
its pros and cons

MapReduce
MPI

Pregel
Graphlab
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Graph Spectral Sparsification

Definition ([SS11])

An e-sparsifier of G is a re
satisfies

bse Laplacian Ly

(1)

Proposition ([SS11; Kyn+16])

There exists an algorithm that can construct an e-sparsifier
> with only O(nlog(n)/?) edges
> in O(mlog?(n)) time and O(nlog(n)/e?) space
P a single pass over the data
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Graph Spectral Sparsification in Machine Learning

Laplacian smoothing (denoising): given y = f* + ¢ and G compute

in(f—y)"(f— fTLgf 2
min(f—y)'(f—y) + Af'Lg (2)
Preproc Time Space

f=(Lg+1)ty 0 O(mlog(n)) O(m)
f=(\Ly + D7ty O(mlog?(n)) O(nlog?(n)) O(nlog(n))

Large computational improvement
L accuracy guarantees! [SWT16]

Need to approximate spectrum only up to regularization level A
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Ridge Graph Spectral Sparsification

Laplacian Ly

lI-e)lg—eM 2Ly =2 (1+e)lg+enl (3)

Mixed multiplicative /additive error
» large (i.e. > ) directions reconstructed accurately
» small (i.e. <) directions uniformly approximated (~1)

Adapted from Randomized Linear Algebra (RLA) community

Ls PSD matrix low-rank approx. [AM15]

RLA — Graph: Improve over O(nlog n) exploiting regularization
Graph — RLA: Exploit Lg structure for fast (e, ~y)-sparsification
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How to construct an c-sparsifier

For complete graphs, sample O(nlog(n)) edges uniformly and
reweight

Fred
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How to construct an c-sparsifier
For generic graphs, sample O(nlog(n)) edges uniformly?
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How to construct an c-sparsifier
For generic graphs, sample O(nlog(n)) edges uniformly?
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How to construct an c-sparsifier

For generic graphs, sample O(nlog(n)) edges using
effective resistance

Effective resistance r. = bZL;fbe of an edge
L, inverse of number of alternative paths
Ly sum of rois n—1

https://math.berkeley.edu/~nikhil/
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How to construct an (e, y)-sparsifier

Definition
y-effective resistance: ro(y) = bl(Lg + 1)~ b,

Effective dim.: der(7) = D re(7) = D1ty ,\i?;_(;-)gl7 <n

Can still be computed using fast graph solvers
L, interpretation as inverse of alternative paths lost

Most existing graph algorithms inapplicable [Kyn+16]
Most existing RLA algorithms too slow [CVMIM17]

Adapt SOA algorithm for kernel matrix approximation
SQUEAK, [CLV17]
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Ll

|
e X

arbitrarily split in subgraphs that fit in a single machine
recursively merge-and-reduce until one graph left
L, additive error cumulates!

Ls merge-and-resparsify
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Sparsification

PH X GRAPH

Compute }521) o Aré”(v) using fast graph solver

For each edge e sample with probability ;59)

w.h.p. (e,v)-accurate and use only
O(dest(7) log(n)) < O(nlog(n)) space
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Sparsification

Compute 521) x 751)(7) using fast graph solver

For each edge e sample with probability '5((91)

w.h.p. (g, 7)-accurate and use only
O(desr(7) log(n)) < O(nlog(n)) space
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Sparsification

Compute 521) x 751)(7) using fast graph solver

For each edge e sample with probability '5((91)

w.h.p. (g, 7)-accurate and use only
O(desr(7) log(n)) < O(nlog(n)) space
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Sparsification

o

Compute pe’ o 7£1)(fy) using fast graph solver

For each edge e sample with probability '5((91)

w.h.p. (g, 7)-accurate and use only
O(desr(7) log(n)) < O(nlog(n)) space
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Merge

Combine sparsifiers, using 20(def () log(n)) space

twice as large as necessary
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Merge-and-Resparsify

Compute }59 o min{?iz)(’y),'ﬁgl)} using fast graph solver

For each edge e sample with probability '5((?2)/';3((31)

survival probability ’,5((92) 'ﬁél)
(1
e

B )
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DisRe guarantees

Given an arbitrary graph G w.h.p. DISRE satisfies
(1) each sub-graphs is an (e, y)-sparsifier
(2) with at most O(defr() log(n)) edges. )
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DisRe guarantees

Space: independent from m O(des(7) log(n)) < O(nlog(n))
Time: O(de(7)log3(n)) for fully balanced tree
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DisRe guarantees

Ll

\

|
e X

.
é

Communication: only O(log(n)) rounds
Ls removed edges are forgotten single pass/streaming
L point-to-point, centralization only to choose tree
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