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Last Lecture

I Online semi-supervised learning
I Online incremental k-centers
I Examples of applications of online SSL
I Analysis of online SSL
I SSL Learnability
I When does graph-based SSL provably help?
I Scaling harmonic functions to millions of samples
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Previous Lab Session

I 12. 11. 2019 by Omar (+Pierre)
I Content

I Semi-supervised learning
I Graph quantization
I Offline face recognizer

I Short written report
I Public questions to piazza
I Deadline: 26. 11. 2019
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Next Lab Session/Lecture

I 26. 11. 2019 by Marc
I 4. 12. 2019 - 14h30-16h30 by Omar (+ Pierre)
I Content: Graph nets

Michal Valko – Graphs in Machine Learning DeepMind - 4/53



Final class projects

I detailed description on the class website
I preferred option: you come up with the topic
I theory/implementation/review or a combination
I one or two people per project (exceptionally three)
I grade 60%: report + short presentation of the team
I deadlines

I 19. 11. 2019 - strongly recommended DL TODAY!
I 26. 11. 2019 - hard DL for taking projects
I 07. 01. 2020 - submission of the project report
I 13. 01. 2020 or later - project presentation

I list of suggested topics on piazza
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Huge G
when G does not fit to memory
…or when we can’t invert L



Sparsify G
with no assumptions
…and we need to process is anyway



Large scale Machine Learning on Graphs

http://blog.carsten-eickhoff.com Botstein et al.
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Are we large yet?

”One trillion edges: graph processing at Facebook-scale.”
Ching et al., VLDB 2015
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Computational bottlenecks

In theory:
Space Time

[O(m),O(n2)] to store O(n2) to construct
O(n3) to run algorithms

In practice:
I 2012 Common Crawl Corpus:

3.5 Billion pages (45 GB)
128 Billion edges (331 GB)

I Pagerank on Facebook Graph:
3 minutes per iteration, hundreds of iterations, tens of hours
on 200 machines, run once per day
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Two phases

1 Preprocessing:
From vectorial data: Collect a dataset X ∈ Rn×d , construct
a graph G using a similarity function
Prepare the graph: Need to check if graph is connected,
make it directed/undirected, build Laplacian
Load it on the machine: On a single machine if possible, if
not find smart way to distribute it

2 Run your algorithm on the graph
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Large scale graph construction

Main bottleneck: time
I Constructing k-nn graph takes O(n2 log(n)), too slow
I Constructing ε graph takes O(n2), still too slow
I In both cases bottleneck is the same, given a node finding

close nodes (k neighbours or ε neighbourhood)

Fundamental limit: just looking at all similarities already too slow.

Can we find close neighbours without checking all distances?
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Distance Approximation

Split your data in small subset of close points

Can find efficiently some (not all) of the neighbours.
I Iterative Quantization
I KD-Trees – Cover Trees – NN search is O(logN) per node
I Locality Sensitive Hashing (LSH)

More general problem: learning good codeword representation
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Storing graph in memory

Main bottleneck: space.
As a Fermi (back-of-the-envelope) problem
I Storing a graph with m edges require to store m tuples

(i , j,wi,j) of 64 bit (8 bytes) doubles or int.
I For standard cloud providers, the largest compute-optimized

instances has 36 cores, but only 60 GB of memory.
I We can store 60 ∗ 10243/(3 ∗ 8) ∼ 2.6× 109 (2.6 billion)

edges in a single machine memory.
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Storing graph in memory

But wait a minute
I Natural graphs are sparse.

For some it is true, for some it is false (e.g. Facebook average
user has 300 friends, Twitter averages 208 followers)
Subcomponents are very dense, and they grow denser over time

I I will construct my graph sparse
Losing large scale relationship, losing regularization

I I will split my graph across multiple machines
Your algorithm does not know that.
What if it needs nonlocal data? Iterative algorithms?
More on this later
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Graph Sparsification

Goal: Get graph G and find sparse H
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Graph Sparsification: What is sparse?

What does sparse graph mean?
I average degree < 10 is pretty sparse
I for billion nodes even 100 should be ok
I in general: average degree < polylog n

Are all edges important?
in a tree — sure, in a dense graph perhaps not
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Graph Sparsification: What is good sparse?
Good sparse by Benczúr and Karger (1996) = cut preserving!

H approximates G well iff ∀S ⊂ V , sum of edges on δS remains
δS = edges leaving S

https://math.berkeley.edu/~nikhil/

Michal Valko – Graphs in Machine Learning DeepMind - 18/53

https://math.berkeley.edu/~nikhil/


Graph Sparsification: What is good sparse?

Good sparse by Benczúr and Karger (1996) = cut preserving!

Why did they care? faster mincut/maxflow

Recall what is a cut: cutG(S) =
∑

i∈S,j∈S wi,j

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Is this always possible? Benczúr and Karger (1996): Yes!

∀ε ∃ (1 + ε)-cut similar G̃ with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges
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Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)
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Graph Sparsification: What is good sparse?

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈

n
d

Could be large :( What to do?
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Graph Sparsification: What is good sparse?
G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n ·

n
d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈ 1

Benczúr & Karger: Can find such H quickly for any G!
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Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f = cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLHf ≤ fTLG f ≤ (1 + ε)fTLHf

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier
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Spectral Graph Sparsification

Rayleigh-Ritz gives:

λmin = min
xTLx
xTx and λmax = max

xTLx
xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLHf ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, argminx ‖LHx− b‖ ≈ argminx ‖LGx− b‖
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Spectral Graph Sparsification
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij =
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ · A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides
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Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

Decomposition of identity: ∀u (unit vector):
∑

e∈E (uTve)
2 = 1

moment ellipse is a sphere
https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

We take a subset of these ees and scale them!

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2 =
∥∥∥L−1/2

G be

∥∥∥2
= bT

eL−1
G be = Reff(e)

reminder Reff(e) is the potential difference between the nodes when injecting a unit current

In other words: Reff(e) is related to the edge importance!

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).

Edges with higher Reff are more electrically significant!
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Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:
I Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
I Reweigh: si = 1/pi (to be unbiased)

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ

(∑
e

sevevT
e

)
≺ 1 + ε

finer bounds now available

What is the the biggest problem here? Getting the pis!

Michal Valko – Graphs in Machine Learning DeepMind - 33/53



Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system x̂ = argminx ‖LGx− be‖ and then Reff = bT
e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

I Fast solvers for SDD systems:
use sparsification internally

all the way until you hit the turtles

still unfeasible when m is large
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Spectral Graph Sparsification

Chicken and egg problem
We need Reff to compute a sparsifier H

We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with very poor approximation R̃eff and poor sparsifier.
Use R̃eff to compute an improved approximate sparsifier H

Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.
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What can I use sparsifiers for?

I Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

I More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods
I Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods
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Distributed graph processing

Large graphs do not fit in memory
Get more memory

Either slower but larger memory
Or fast memory but divided among many machines

Many challenges
Needs to be scalable

minimimize pass over data / communication costs
Needs to be consistent

updates should propagate properly
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Distributed graph processing

Different choices have different impacts: for example splitting the
graph according to nodes or according to edges.

Many computation models (academic and commercial) each with
its pros and cons

MapReduce
MPI
Pregel
Graphlab
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Graph Spectral Sparsification

Definition ([SS11])

An ε-sparsifier of G is a reweighted subgraph H whose Laplacian LH
satisfies

(1− ε)LG � LH � (1 + ε)LG (1)

Proposition ([SS11; Kyn+16])
There exists an algorithm that can construct an ε-sparsifier
I with only O(n log(n)/ε2) edges
I in O(m log2(n)) time and O(n log(n)/ε2) space
I a single pass over the data

Michal Valko – Graphs in Machine Learning DeepMind - 39/53



Graph Spectral Sparsification in Machine Learning

Laplacian smoothing (denoising): given y , f? + ξ and G compute

min
f∈Rn

(f− y)T(f− y) + λfTLGf (2)

Preproc Time Space
f̂ = (λLG + I)−1y 0 O(m log(n)) O(m)

f̃ = (λLH + I)−1y O(m log2(n)) O(n log2(n)) O(n log(n))

Large computational improvement
accuracy guarantees! [SWT16]

Need to approximate spectrum only up to regularization level λ
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Ridge Graph Spectral Sparsification

Definition
An (ε, γ)-sparsifier of G is a reweighted subgraph H whose Laplacian LH
satisfies

(1− ε)LG − εγI � LH � (1 + ε)LG + εγI (3)

Mixed multiplicative/additive error
I large (i.e. ≥ γ) directions reconstructed accurately
I small (i.e. ≤ γ) directions uniformly approximated (γI)

Adapted from Randomized Linear Algebra (RLA) community
PSD matrix low-rank approx. [AM15]

RLA → Graph: Improve over O(n log n) exploiting regularization
Graph → RLA: Exploit LG structure for fast (ε, γ)-sparsification
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How to construct an ε-sparsifier
For complete graphs, sample O(n log(n)) edges uniformly and
reweight

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/
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How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges uniformly?

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/
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How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges uniformly?

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/
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How to construct an ε-sparsifier
For generic graphs, sample O(n log(n)) edges using
effective resistance

Effective resistance re = bT
eL+

G be of an edge
inverse of number of alternative paths

sum of re is n − 1

https://math.berkeley.edu/~nikhil/
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How to construct an (ε, γ)-sparsifier

Definition

γ-effective resistance: re(γ) = bT
e(LG + γI)−1be

Effective dim.: deff(γ) =
∑

e re(γ) =
∑n

i=1
λi(LG)

λi(LG)+γ ≤ n

Can still be computed using fast graph solvers
interpretation as inverse of alternative paths lost

Most existing graph algorithms inapplicable [Kyn+16]
Most existing RLA algorithms too slow [CMM17]

Adapt SOA algorithm for kernel matrix approximation
SQUEAK, [CLV17]
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DisRe

arbitrarily split in subgraphs that fit in a single machine
recursively merge-and-reduce until one graph left

additive error cumulates!
merge-and-resparsify
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Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space
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Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver
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Sparsification

Compute p̃(1)
e ∝ r̃ (1)e (γ) using fast graph solver

For each edge e sample with probability p̃(1)
e

w.h.p. (ε, γ)-accurate and use only
O(deff(γ) log(n)) ≤ O(n log(n)) space
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Merge

Combine sparsifiers, using 2O(deff(γ) log(n)) space

twice as large as necessary
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Merge-and-Resparsify

Compute p̃(2)
e ∝ min{r̃ (2)e (γ), p̃(1)

e } using fast graph solver
For each edge e sample with probability p̃(2)

e /p̃(1)
e

survival probability p̃(2)
e

p̃(1)
e

p̃(1)
e

survival probability p̃(2)
e

Z
Zp̃(1)

e

Z
Zp̃(1)

e
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DisRe guarantees

Theorem
Given an arbitrary graph G w.h.p. DisRe satisfies
(1) each sub-graphs is an (ε, γ)-sparsifier
(2) with at most O(deff(γ) log(n)) edges.
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DisRe guarantees

Space: independent from m O(deff(γ) log(n)) ≤ O(n log(n))

Time: O(deff(γ) log
3(n)) for fully balanced tree
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DisRe guarantees

Communication: only O(log(n)) rounds
removed edges are forgotten single pass/streaming

point-to-point, centralization only to choose tree
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