Graphs in Machine Learning

Michal Valko

DeepMind Paris and Inria Lille

TA: Omar Darwiche Domingues with the help of Pierre Perrault

Partially based on material by: Gary Miller, Mikhail Belkin, Branislav Kveton, <u>Doyle & S</u>chnell, Daniel Spielman

October 22nd, 2019 MVA 2019/2020

Graph nets lecture

- invited lecture by Marc Lelarge
- including 2019 material
- ► TD 3 the following week on graph nets
- questions from Marc
 - basic of deep learning?
 - deep learning course at MVA or elsewhere?
 - ► RNN?
 - ► VAE?

Previous Lecture

- spectral graph theory
- Laplacians and their properties
 - symmetric and asymmetric normalization
 - random walks
- geometry of the data and the connectivity
- spectral clustering

This Lecture

- manifold learning with Laplacians eigenmaps
- recommendation on a bipartite graph
- resistive networks
 - recommendation score as a resistance?
 - Laplacian and resistive networks
 - resistance distance and random walks
- Gaussian random fields and harmonic solution
- graph-based semi-supervised learning and manifold regularization
- transductive learning
- inductive and transductive semi-supervised learning

$\mathbb{R}^d ightarrow \mathbb{R}^m$ manifold learning

...discworld

Manifold Learning: Recap

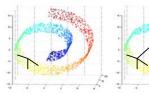
problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- ► What do we know about the dimensionality reduction
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - lacktriangle often assuming $\mathcal{M}\subset\mathbb{R}^d$
 - feature extraction
 - linear vs. nonlinear dimensionality reduction
- ► What do we know about linear vs. nonlinear methods?
 - ▶ linear: ICA, PCA, SVD, ...
 - nonlinear often preserve only local distances

Manifold Learning: Linear vs. Non-linear

Manifold Learning: Preserving (just) local distances



$$d(\mathbf{x}_i, \mathbf{x}_i)$$
 is small

$$d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j)$$
 only if $d(\mathbf{x}_i, \mathbf{x}_j)$ is small

$$\min \sum_{ij} w_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

Looks familiar?

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$Lf = \lambda Df$$

Step 2: Assign *m* new coordinates:

$$\mathbf{x}_i \mapsto (f_2(i), \ldots, f_{m+1}(i))$$

Note₁: we need to get m+1 smallest eigenvectors

Note₂: \mathbf{f}_1 is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{1} = \mathbf{0}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{f} = \mathbf{1}$$

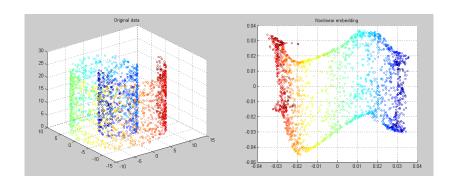
The meaning of the constraints is similar as for spectral clustering:

 $\mathbf{f}^{\mathsf{T}}\mathbf{D}\mathbf{f}=\mathbf{1}$ is for scaling

 $\mathbf{f}^{\mathsf{T}}\mathbf{D}\mathbf{1}=\mathbf{0}$ is to not get \mathbf{v}_1

What is the solution?

Manifold Learning: Example



http://www.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning

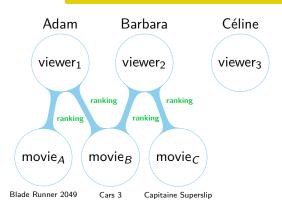
score(v, m)

recommendation on a bipartite graph

...with the graph Laplacian!

Use of Laplacians: Movie recommendation

How to do movie recommendation on a bipartite graph?



Question: Do we recommend Capitaine Superslip to Adam?

Let's compute some score(v, m)!

Use of Laplacians: Movie recommendation

How to compute the score(v, m)? Using some graph distance!

Idea₁: maximally weighted path

$$\operatorname{score}(v,m) = \max_{vPm} \operatorname{weight}(P) = \max_{vPm} \sum_{e \in P} \operatorname{ranking}(e)$$

Idea₂: change the path weight

 $\operatorname{score}_2(v, m) = \max_{v \neq m} \operatorname{weight}_2(P) = \max_{v \neq m} \min_{e \in P} \operatorname{ranking}(e)$

Idea₃: consider everything

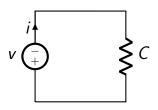
 $score_3(v, m) = max flow from m to v$

Laplacians and Resistive Networks

How to compute the score(v, m)?

Idea₄: view edges as conductors

 $score_4(v, m) = effective resistance between m and v$



 $C \equiv \text{conductance}$

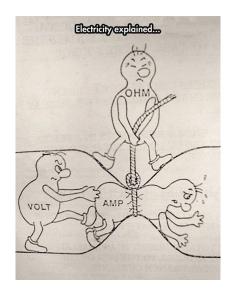
 $R \equiv \text{resistance}$

 $i \equiv \text{current}$

 $V \equiv \text{voltage}$

$$C = \frac{1}{R}$$
 $i = CV = \frac{V}{R}$

Resistive Networks: Some high-school physics



Resistive Networks

resistors in series

$$R = R_1 + \dots + R_n$$
 $C = \frac{1}{\frac{1}{C_1} + \dots + \frac{1}{C_N}}$ $i = \frac{V}{R}$

conductors in parallel

$$C = C_1 + \cdots + C_N$$
 $i = VC$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let V_{ab} be the voltage between them and i_{ab} the current between them. Define $R_{ab} = \frac{V_{ab}}{i_{ab}}$ and $C_{ab} = \frac{1}{R_{ab}}$.

We treat the entire graph as a resistor!

Resistive Networks: Optional Homework (ungraded)

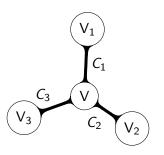
Show that R_{ab} is a metric space.

- 1. $R_{ab} > 0$
- 2. $R_{ab} = 0$ iff a = b
- 3. $R_{ab} = R_{ba}$
- 4. $R_{ac} \leq R_{ab} + R_{bc}$

The effective resistance is a distance!

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out



$$V=\frac{C_1}{C}V_1+\frac{C_2}{C}V_2+\frac{C_3}{C}V_3$$
 (convex combination) residual current = $CV-C_1V_1-C_2V_2-C_3V_3$ Kirchhoff says: This is zero! There is no residual current!

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij} = \text{sum of conductances}$

$$\mathbf{L}_{ij} = egin{cases} d_i & ext{if } i = j, \ -c_{ij} & ext{if } (i,j) \in E, \ 0 & ext{otherwise}. \end{cases}$$

 $\mathbf{v} = \mathbf{voltage}$ setting of the nodes on graph.

 $(\mathbf{L}\mathbf{v})_i = \text{residual current at } \mathbf{v}_i - \mathbf{v}_i = \mathbf{v}_i$

Use: setting voltages and getting the current

 $Inverting \equiv injecting current and getting the voltages$

The net injected has to be zero \equiv Kirchhoff's Law.

Resistors and the Laplacian: Finding R_{ab}

Let's calculate R_{1N} to get the movie recommendation score!

$$\mathbf{L}\begin{pmatrix}0\\v_2\\\vdots\\v_{n-1}\\1\end{pmatrix}=\begin{pmatrix}i\\0\\\vdots\\0\\-i\end{pmatrix}$$

$$i=\frac{V}{R}\qquad V=1\qquad R=\frac{1}{i}$$
 Return $R_{1N}=\frac{1}{i}$

Doyle and Snell: Random Walks and Electric Networks https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf

Resistors and the Laplacian: Finding R_{1N}

$$\mathbf{L}\mathbf{v} = (i, 0, \dots, -i)^{\mathsf{T}} \equiv \mathbf{boundary} \ \mathbf{valued} \ \mathbf{problem}$$

For R_{1N}

 V_1 and V_N are the **boundary**

 (v_1, v_2, \dots, v_N) is harmonic:

 $V_i \in \mathbf{interior}$ (not boundary)

 V_i is a convex combination of its neighbors

Resistors and the Laplacian: Finding R_{1n}

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $\mathbf{f} = \mathbf{v}$ is harmonic then min and max are on the boundary.

Uniqueness Principle

If \mathbf{f} and \mathbf{g} are harmonic with the same boundary then $\mathbf{f} = \mathbf{g}$

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \qquad \text{Why?}$$

Question: Does **v** exist? **L** does not have an inverse :(.

Not unique: 1 in the nullspace of L : L(v + c1) = Lv + cL1 = Lv

Moore-Penrose pseudo-inverse solves LS

Solution: Instead of $\mathbf{v} = \mathbf{L}^{-1}\mathbf{i}_{\mathrm{ext}}$ we take $\mathbf{v} = \mathbf{L}^{+}\mathbf{i}_{\mathrm{ext}}$

We get: $R_{1N} = v_1 - v_N = \mathbf{i}_{\text{ext}}^{\mathsf{T}} \mathbf{v} = \mathbf{i}_{\text{ext}}^{\mathsf{T}} \mathbf{L}^+ \mathbf{i}_{\text{ext}}$.

Notice: We can reuse L^+ to get resistances for any pair of nodes!

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}} = \sum_{i=1}^{N} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\mathsf{T}} = \sum_{i=2}^{N} \lambda_{i} \mathbf{q}_{i} \mathbf{q}_{i}^{\mathsf{T}}$$

Pseudo-inverse of the Laplacian:

$$\mathbf{L}^+ = \mathbf{Q} \mathbf{\Lambda}^+ \mathbf{Q}^{\mathsf{T}} = \sum_{i=2}^N \frac{1}{\lambda_i} \mathbf{q}_i \mathbf{q}_i^{\mathsf{T}}$$

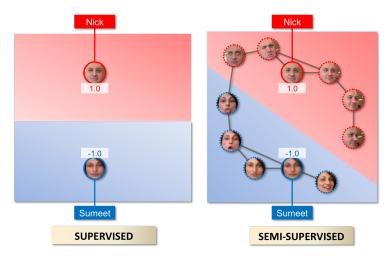
Moore-Penrose pseudo-inverse solves a least squares problem:

$$\mathbf{v} = \operatorname*{\mathsf{arg\,min}}_{\mathbf{x}} \left\| \mathbf{L} \mathbf{x} - \mathbf{i}_{\mathrm{ext}} \right\|_{2} = \mathbf{L}^{+} \mathbf{i}_{\mathrm{ext}}$$

SSL semi-supervised learning

...our running example for learning with graphs

Semi-supervised learning: How is it possible?



This is how children learn! hypothesis

Semi-supervised learning (SSL)

SSL problem: definition

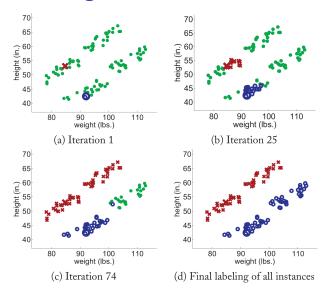
Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^n$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Some facts about **SSL**

- assumes that the unlabeled data is useful
- works with data geometry assumptions
 - cluster assumption low-density separation
 - manifold assumption
 - smoothness assumptions, generative models, ...
- now it helps now, now it does not (sic)
 - provable cases when it helps
- inductive or transductive/out-of-sample extension

http://olivier.chapelle.cc/ssl-book/discussion.pdf

SSL: Self-Training



SSL: Overview: Self-Training

SSL: Self-Training

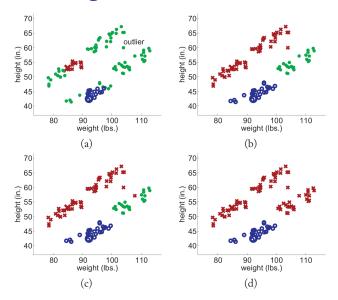
Input:
$$\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$$
 and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^{N}$ Repeat:

- ightharpoonup train f using \mathcal{L}
- ightharpoonup apply f to (some) \mathcal{U} and add them to \mathcal{L}

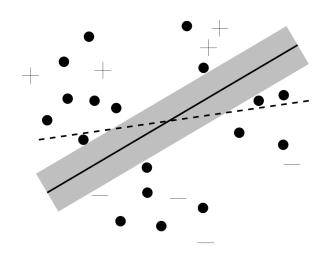
What are the properties of self-training?

- ▶ its a wrapper method
- heavily depends on the the internal classifier
- some theory exist for specific classifiers
- nobody uses it anymore
- errors propagate (unless the clusters are well separated)

SSL: Self-Training: Bad Case



SSL: Transductive SVM: S3VM



SSL: Transductive SVM: Classical SVM

Linear case: $f = \mathbf{w}^\mathsf{T} \mathbf{x} + b \rightarrow \text{we look for } (\mathbf{w}, b)$

max-margin classification

$$\max_{\mathbf{w},b} \frac{1}{\|\mathbf{w}\|}$$
 $s.t. \quad y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b) \ge 1 \quad \forall i = 1,\ldots,n_l$

note the difference between functional and geometric margin

max-margin classification

$$egin{array}{ll} \min_{\mathbf{w},b} & \|\mathbf{w}\|^2 \ s.t. & y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i+b) \geq 1 & \forall i=1,\ldots,n_I \end{array}$$

SSL: Transductive SVM: Classical SVM

max-margin classification: separable case

$$\min_{\mathbf{w},b} \ \|\mathbf{w}\|^2$$

s.t.
$$y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i+b)\geq 1 \quad \forall i=1,\ldots,n_l$$

max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \quad \lambda \|\mathbf{w}\|^2 + \sum_i \xi_i$$

s.t.
$$y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge 1 - \xi_i \quad \forall i = 1, \dots, n_l$$

 $\xi_i > 0 \quad \forall i = 1, \dots, n_l$

SSL: Transductive SVM: Classical SVM

max-margin classification: non-separable case

$$\min_{\mathbf{w},b} \lambda \|\mathbf{w}\|^2 + \sum_{i} \xi_{i}$$
s.t. $y_{i}(\mathbf{w}^{\mathsf{T}}\mathbf{x}_{i} + b) \geq 1 - \xi_{i} \quad \forall i = 1, ..., n_{l}$

$$\xi_{i} \geq 0 \quad \forall i = 1, ..., n_{l}$$

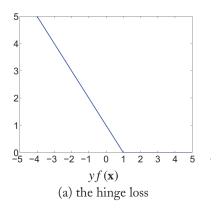
Unconstrained formulation using hinge loss:

$$\min_{\mathbf{w},b} \sum_{i}^{m_{i}} \max \left(1 - y_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|^{2}$$

In general?

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} V(\mathbf{x}_{i},y_{i},f(\mathbf{x}_{i})) + \lambda \Omega(f)$$

SSL: Transductive SVM: Classical SVM: Hinge loss



$$V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) = \max(1 - y_i(\mathbf{w}^\mathsf{T}\mathbf{x}_i + b), 0)$$

SSL: Transductive SVM: Unlabeled Examples

$$\min_{\mathbf{w},b} \sum_{i}^{n_{I}} \max \left(1 - y_{i} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_{i} + b\right), 0\right) + \lambda \|\mathbf{w}\|^{2}$$

How to incorporate unlabeled examples?

No y's for unlabeled x.

Prediction of f for (any) x?
$$\hat{y} = \operatorname{sgn}(f(\mathbf{x})) = \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)$$

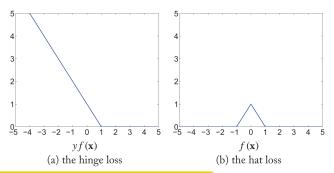
Pretending that $sgn(f(\mathbf{x}))$ is the true label ...

$$V(\mathbf{x}, \widehat{y}, f(\mathbf{x})) = \max (1 - \widehat{y}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b), 0)$$

$$= \max (1 - \operatorname{sgn}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b)(\mathbf{w}^{\mathsf{T}}\mathbf{x} + b), 0)$$

$$= \max (1 - |\mathbf{w}^{\mathsf{T}}\mathbf{x} + b|, 0)$$

SSL: Transductive SVM: Hinge and Hat Loss

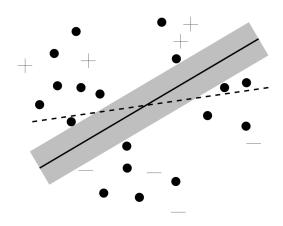


What is the difference in the objectives?

Hinge loss penalizes?

Hat loss penalizes?

SSL: Transductive SVM: S3VM



This is what we wanted!

SSL: Transductive SVM: Formulation

Main SVM idea stays the same: penalize the margin

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max (1 - y_i (\mathbf{w}^\mathsf{T} \mathbf{x}_i + b), 0) + \lambda_1 \|\mathbf{w}\|^2 + \lambda_2 \sum_{i=n_l+1}^{n_l+n_u} \max (1 - |\mathbf{w}^\mathsf{T} \mathbf{x}_i + b|, 0)$$

What is the loss and what is the regularizer?

$$\min_{\mathbf{w},b} \sum_{i=1}^{n_l} \max (1 - y_i (\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b), 0) + \lambda_1 ||\mathbf{w}||^2 + \lambda_2 \sum_{i=n_l+1}^{n_l+n_u} \max (1 - |\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b|, 0)$$

Think of unlabeled data as the regularizers for your classifiers!

Practical hint: Additionally enforce the class balance.

What it the main issue of TSVM?

recent advancements: http://jmlr.org/proceedings/papers/v48/hazanb16.pdf

SSL(G)

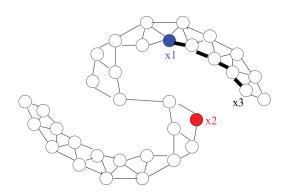
semi-supervised learning with graphs and harmonic functions

...our running example for learning with graphs

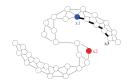
SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

*following some insights from vision research in 1980s



SSL with Graphs: MinCut



MinCut SSL: an idea similar to MinCut clustering Where is the link?

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\operatorname{cut} = \sum_{i,j=1}^{n_i + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \Omega(f)$$

Why $(f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$ and not $|f(\mathbf{x}_i) - f(\mathbf{x}_j)|$?

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l + n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

$$\min_{\mathbf{w},b} \sum_{i}^{n_{l}} V(\mathbf{x}_{i}, y_{i}, f(\mathbf{x}_{i})) + \lambda \Omega(\mathbf{f})$$

It would be nice if we match the prediction on labeled data:

$$V(\mathbf{x}, y, f(\mathbf{x})) = \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2$$

SSL with Graphs: MinCut

Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it?

Are we happy?

We need a better way to reflect the confidence.

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.

Idea 2: Find a smooth one. (harmonic solution)

Harmonic SSL

1): As before, we constrain f to match the supervised data:

$$f(\mathbf{x}_i) = y_i \quad \forall i \in \{1, \dots, n_l\}$$

2): We enforce the solution f to be harmonic:

$$f(\mathbf{x}_i) = \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim i} w_{ij}} \qquad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l + n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l + n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...if we just relax the integer constraints to be real ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

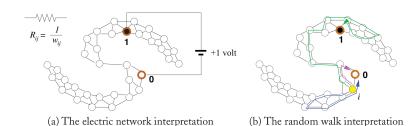
...or equivalently (note that $f(\mathbf{x}_i) = f_i$) ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l + n_u}} \sum_{i,j=1}^{n_l + n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2$$

s.t.
$$y_i = f(\mathbf{x}_i) \quad \forall i = 1, \dots, n_l$$

Properties of the relaxation from ± 1 to $\mathbb R$

- ▶ there is a closed form solution for **f**
- this solution is unique
- globally optimal
- it is either constant or has a maximum/minimum on a boundary
- $ightharpoonup f(\mathbf{x}_i)$ may not be discrete
 - but we can threshold it
- electric-network interpretation
- random-walk interpretation



Random walk interpretation:

- 1) start from the vertex you want to label and randomly walk
- 2) $P(j|i) = \frac{w_{ij}}{\sum_{\iota} w_{ik}}$ \equiv $P = D^{-1}W$
- 3) finish when a labeled vertex is hit

absorbing random walk

 f_i = probability of reaching a positive labeled vertex

How to compute HS? Option A: iteration/propagation

- **Step 1:** Set $f(\mathbf{x}_i) = y_i$ for $i = 1, ..., n_l$
- **Step 2:** Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

How to compute HS? Option B: Closed form solution

Define
$$\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l + n_u} w_{ij} \left(f(\mathbf{x}_i) - f(\mathbf{x}_j) \right)^2 = \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f}$$

L is a $(n_l + n_u) \times (n_l + n_u)$ matrix:

$$\mathbf{L} = \left[\begin{array}{cc} \mathbf{L}_{II} & \mathbf{L}_{Iu} \\ \mathbf{L}_{u1} & \mathbf{L}_{uu} \end{array} \right]$$

How to compute this **constrained** minimization problem?

Let us compute harmonic solution using harmonic property!

How did we formalize the harmonic property of a circuit?

$$(\mathbf{Lf})_u = \mathbf{0}_u$$

In matrix notation

$$\left[\begin{array}{cc} \mathbf{L}_{II} & \mathbf{L}_{Iu} \\ \mathbf{L}_{uI} & \mathbf{L}_{uu} \end{array}\right] \left[\begin{array}{c} \mathbf{f}_{I} \\ \mathbf{f}_{u} \end{array}\right] = \left[\begin{array}{c} \dots \\ \mathbf{0}_{u} \end{array}\right]$$

 \mathbf{f}_{l} is constrained to be \mathbf{y}_{l} and for \mathbf{f}_{ll}

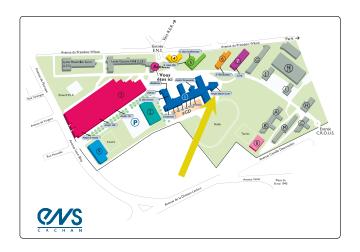
$$\mathbf{L}_{ul}\mathbf{f}_{l}+\mathbf{L}_{uu}\mathbf{f}_{u}=\mathbf{0}_{u}$$

...from which we get

$$\mathbf{f}_{u} = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_{l}) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_{l}).$$

Note that this does not depend on L_{II} .

Next class: Tuesday, October 29th at 13:30!



Michal Valko

contact via Piazza