

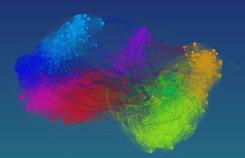
Graphs in Machine Learning

Michal Valko

Inria Lille - Nord Europe, France

TA: Daniele Calandriello

Partially based on material by: Ulrike von Luxburg, Gary Miller, Doyle & Schnell, Daniel Spielman

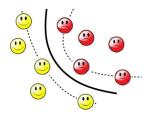


October 17, 2016 MVA 2016/2017

Previous Lecture

- similarity graphs
 - different types
 - construction
 - sources of graphs
 - practical considerations
- spectral graph theory
- ► Laplacians and their properties
 - symmetric and asymmetric normalization
- random walks
- recommendation on a bipartite graph
- resistive networks
 - recommendation score as a resistance?
 - ► Laplacian and resistive networks
 - resistance distance and random walks

Statistical Machine Learning in Paris!



https://sites.google.com/site/smileinparis/sessions-2016--17

Speaker: Isabelle Guyon - LRI (équipe TAO), UPSud

Topic: Network Reconstruction

Date: Monday, October 17, 2016

Time: 13:30 - 14:30 (this is pretty soon)

Place: Institut Henri Poincaré — salle 314

This Lecture

- geometry of the data and the connectivity
- spectral clustering
- manifold learning with Laplacians eigenmaps
- Gaussian random fields and harmonic solution
- graph-based semi-supervised learning and manifold regularization
- transductive learning
- inductive and transductive semi-supervised learning

Next Class: Lab Session

- ▶ 24. 10. 2016 by Daniele Calandriello
- cca. 10h30-11h help with setup (optional), 11h-13: TD
- Salle Condorcet
- Download the image and set it up BEFORE the class
- Matlab/Octave
- Short written report (graded)
- ▶ All homeworks together account for 40% of the final grade
- Content
 - Graph Construction
 - ▶ Test sensitivity to parameters: σ , k, ε
 - Spectral Clustering
 - ► Spectral Clustering vs. *k*-means
 - ► Image Segmentation

How to rule the world?

Let's make Sokovia great again!

How to rule the world?

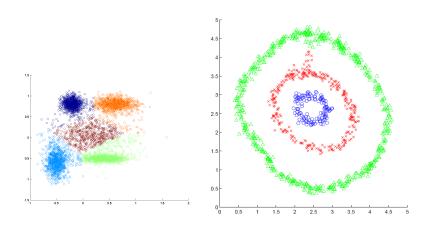
How to rule the world: "AI" is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/ 1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a story.html

https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/

Talk of Rayid Ghaniy: https://www.youtube.com/watch?v=gDM1GuszM_U

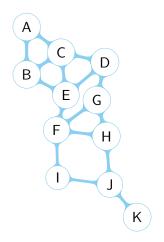
Application of Graphs for ML: Clustering



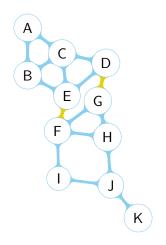
Application: Clustering - Recap

- What do we know about the clustering in general?
 - ▶ ill defined problem (different tasks → different paradigms)
 - "I know it when I see it"
 - inconsistent (wrt. Kleinberg's axioms)
 - number of clusters k need often be known
 - difficult to evaluate
- ► What do we know about *k*-means?
 - "hard" version of EM clustering
 - sensitive to initialization
 - optimizes for compactness
 - ▶ yet: algorithm-to-go

Spectral Clustering: Cuts on graphs

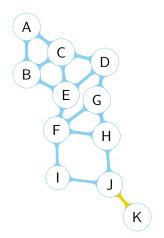


Spectral Clustering: Cuts on graphs



Defining the cut objective we get the clustering!

Spectral Clustering: Cuts on graphs



MinCut: $\operatorname{cut}(A, B) = \sum_{i \in A, i \in B} w_{ij}$

Are we done?

Can be solved efficiently, but maybe not what we want

Spectral Clustering: Balanced Cuts

Let's balance the cuts!

MinCut

$$\operatorname{cut}(A,B) = \sum_{i \in A, j \in B} w_{ij}$$

RatioCut

RatioCut(A, B) =
$$\sum_{i \in A, j \in B} w_{ij} \left(\frac{1}{|A|} + \frac{1}{|B|} \right)$$

Normalized Cut

$$\operatorname{NCut}(A, B) = \sum_{i \in A, j \in B} w_{ij} \left(\frac{1}{\operatorname{vol}(A)} + \frac{1}{\operatorname{vol}(B)} \right)$$

Spectral Clustering: Balanced Cuts

$$\begin{aligned} & \operatorname{RatioCut}(A,B) = \operatorname{cut}(A,B) \left(\frac{1}{|A|} + \frac{1}{|B|} \right) \\ & \operatorname{NCut}(A,B) = \operatorname{cut}(A,B) \left(\frac{1}{\operatorname{vol}(A)} + \frac{1}{\operatorname{vol}(B)} \right) \end{aligned}$$

Can we compute this? RatioCut and NCut are NP hard :(

Approximate!

Relaxation for (simple) balanced cuts for 2 sets

$$\min_{A,B} \operatorname{cut}(A,B)$$
 s.t. $|A| = |B|$

Graph function
$$\mathbf{f}$$
 for cluster membership: $f_i = \begin{cases} 1 & \text{if } V_i \in A, \\ -1 & \text{if } V_i \in B. \end{cases}$

What it is the cut value with this definition?

$$\operatorname{cut}(A,B) = \sum_{i \in A, i \in B} w_{i,j} = \frac{1}{4} \sum_{i,j} w_{i,j} (f_i - f_j)^2 = \frac{1}{2} \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f}$$

What is the relationship with the smoothness of a graph function?

$$\operatorname{cut}(A, B) = \sum_{i \in A, j \in B} w_{i,j} = \frac{1}{4} \sum_{i,j} w_{i,j} (f_i - f_j)^2 = \frac{1}{2} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$
$$|A| = |B| \implies \sum_{i} f_i = 0 \implies \mathbf{f} \perp \mathbf{1}_N$$

$$\|\mathbf{f}\| = \sqrt{N}$$

objective function of spectral clustering

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$
 s.t. $f_i = \pm 1$, $\mathbf{f} \perp \mathbf{1}_N$, $\|\mathbf{f}\| = \sqrt{N}$

Still NP hard : $(\rightarrow$ Relax even further!

objective function of spectral clustering

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_N, \quad \|\mathbf{f}\| = \sqrt{N}$$

Rayleigh-Ritz theorem

If $\lambda_1 \leq \cdots \leq \lambda_N$ are the eigenvectors of real symmetric **L** then

$$\lambda_1 = \min_{\mathbf{x} \neq 0} \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} = \min_{\mathbf{x}^\mathsf{T} \mathbf{x} = 1} \mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}$$

$$\lambda_{\mathcal{N}} = \max_{\mathbf{x} \neq \mathbf{0}} \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} = \max_{\mathbf{x}^\mathsf{T} \mathbf{x} = 1} \mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}$$

$$\frac{\mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\mathsf{T}} \mathbf{x}} \equiv \mathsf{Rayleigh} \mathsf{quotient}$$

How can we use it?

objective function of spectral clustering

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{N}, \quad \|\mathbf{f}\| = \sqrt{N}$$

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)

If $\lambda_1 \leq \cdots \leq \lambda_N$ are the eigenvectors of real symmetric **L** and $\mathbf{v}_1, \ldots, \mathbf{v}_N$ the corresponding orthogonal eigenvalues, then for k=1:N-1

$$\lambda_{k+1} = \min_{\mathbf{x} \neq \mathbf{0}, \mathbf{x} \perp \mathbf{v}_1, \dots \mathbf{v}_k} \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} = \min_{\mathbf{x}^\mathsf{T} \mathbf{x} = \mathbf{1}, \mathbf{x} \perp \mathbf{v}_1, \dots \mathbf{v}_k} \mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}$$

$$\lambda_{N-k} = \max_{\mathbf{x} \neq 0, \mathbf{x} \perp \mathbf{v}_n, \dots \mathbf{v}_{N-k+1}} \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} = \max_{\mathbf{x}^\mathsf{T} \mathbf{x} = 1, \mathbf{x} \perp \mathbf{v}_N, \dots \mathbf{v}_{N-k+1}} \mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}$$

Rayleigh-Ritz theorem: Quick and dirty proof

When we reach the extreme points?

$$\frac{\partial}{\partial \mathbf{x}} \left(\frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} \right) = \frac{\partial}{\partial \mathbf{x}} \left(\frac{f(\mathbf{x})}{g(\mathbf{x})} \right) = 0 \iff f'(\mathbf{x}) g(\mathbf{x}) = f(\mathbf{x}) g'(\mathbf{x})$$

By matrix calculus (or just calculus):

$$\frac{\partial \mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\partial \mathbf{x}} = 2 \mathbf{L} \mathbf{x} \quad \text{and} \quad \frac{\partial \mathbf{x}^\mathsf{T} \mathbf{x}}{\partial \mathbf{x}} = 2 \mathbf{x}$$

When
$$f'(\mathbf{x})g(\mathbf{x}) = f(\mathbf{x})g'(\mathbf{x})$$
?

$$Lx(x^{T}x) = (x^{T}Lx)x \iff Lx = \frac{x^{T}Lx}{x^{T}x}x \iff Lx = \lambda x$$

Conclusion: Extremes are the eigenvectors with their eigenvalues

objective function of spectral clustering

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_{N}, \quad \|\mathbf{f}\| = \sqrt{N}$$

Solution: **second eigenvector** How do we get the clustering?

The solution may not be integral. What to do?

$$cluster_i = \begin{cases} 1 & \text{if } f_i \ge 0, \\ -1 & \text{if } f_i < 0. \end{cases}$$

Works but this heuristics is often too simple. In practice, cluster f using k-means to get $\{C_i\}_i$ and assign:

$$\mathrm{cluster}_i = \begin{cases} 1 & \text{if } i \in C_1, \\ -1 & \text{if } i \in C_{-1}. \end{cases}$$

Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A, B) =
$$\sum_{i \in A, j \in B} w_{ij} \left(\frac{1}{|A|} + \frac{1}{|B|} \right)$$

Define graph function **f** for cluster membership of RatioCut:

$$f_i = \begin{cases} \sqrt{\frac{|B|}{|A|}} & \text{if } V_i \in A, \\ -\sqrt{\frac{|A|}{|B|}} & \text{if } V_i \in B. \end{cases}$$

$$\mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j} w_{i,j} (f_i - f_j)^2 = (|A| + |B|) \mathrm{RatioCut}(A, B)$$

Spectral Clustering: Approximating RatioCut

Define graph function **f** for cluster membership of RatioCut:

$$f_i = \begin{cases} \sqrt{\frac{|B|}{|A|}} & \text{if } V_i \in A, \\ -\sqrt{\frac{|A|}{|B|}} & \text{if } V_i \in B. \end{cases}$$
$$\sum_i f_i = 0$$
$$\sum_i f_i^2 = N$$

objective function of spectral clustering (same - it's magic!)

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f} \perp \mathbf{1}_N, \quad \|\mathbf{f}\| = \sqrt{N}$$

Spectral Clustering: Approximating NCut

Normalized Cut

$$\operatorname{NCut}(A, B) = \sum_{i \in A, j \in B} w_{ij} \left(\frac{1}{\operatorname{vol}(A)} + \frac{1}{\operatorname{vol}(B)} \right)$$

Define graph function **f** for cluster membership of NCut:

$$f_i = \begin{cases} \sqrt{\frac{\text{vol}(A)}{\text{vol}(B)}} & \text{if } V_i \in A, \\ -\sqrt{\frac{\text{vol}(B)}{\text{vol}(A)}} & \text{if } V_i \in B. \end{cases}$$
$$(\mathbf{Df})^\mathsf{T} \mathbf{1}_n = 0 \qquad \mathbf{f}^\mathsf{T} \mathbf{Df} = \text{vol}(\mathcal{V}) \qquad \mathbf{f}^\mathsf{T} \mathbf{Lf} = \text{vol}(\mathcal{V}) \text{NCut}(A, B)$$

objective function of spectral clustering (NCut)

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{D} \mathbf{f} \perp \mathbf{1}_{\mathcal{N}}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{f} = \operatorname{vol}(\mathcal{V})$$

Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{D} \mathbf{f} \perp \mathbf{1}_{\mathcal{N}}, \quad \mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{f} = \text{vol}(\mathcal{V})$$

Can we apply Rayleigh-Ritz now? Define $\mathbf{w} = \mathbf{D}^{1/2}\mathbf{f}$

objective function of spectral clustering (NCut)

$$\min_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} \mathbf{w} \quad \text{s.t.} \quad w_i \in \mathbb{R}, \mathbf{w} \perp \mathbf{D}^{1/2} \mathbf{1}_N, \|\mathbf{w}\|^2 = \text{vol}(\mathcal{V})$$

objective function of spectral clustering (NCut)

$$\min_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{L}_{\mathrm{sym}} \mathbf{w} \quad \mathrm{s.t.} \quad w_i \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1,\mathbf{L}_{\mathrm{sym}}}, \quad \|\mathbf{w}\|^2 = \mathrm{vol}(\mathcal{V})$$

Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

$$\min_{\mathbf{w}} \mathbf{w}^{\mathsf{T}} \mathbf{L}_{\mathrm{sym}} \mathbf{w} \quad \mathrm{s.t.} \quad w_i \in \mathbb{R}, \quad \mathbf{w} \perp \mathbf{v}_{1, \mathbf{L}_{\mathrm{sym}}}, \quad \|\mathbf{w}\| = \mathrm{vol}(\mathcal{V})$$

Solution by Rayleigh-Ritz?
$$\mathbf{w} = \mathbf{v}_{2,\mathbf{L}_{\mathrm{sym}}} \ \mathbf{f} = \mathbf{D}^{-1/2}\mathbf{w}$$

 \boldsymbol{f} is a the second eigenvector of $\boldsymbol{L}_{\mathrm{rw}}$!

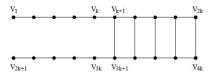
tl;dr: Get the second eigenvector of L/L_{rw} for RatioCut/NCut.

Spectral Clustering: Approximation

These are all approximations.

How bad can they be?

Example: cockroach graphs

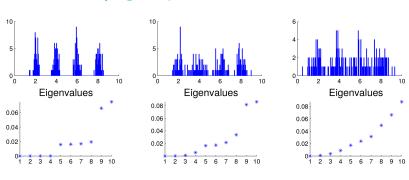


No efficient approximation exist. Other relaxations possible.

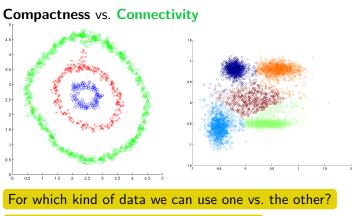
https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95.pdf

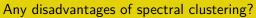
Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

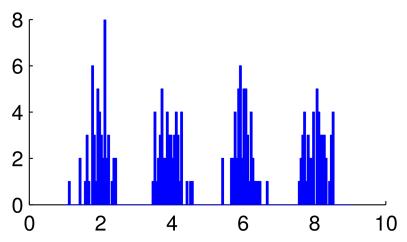


Spectral Clustering: Understanding



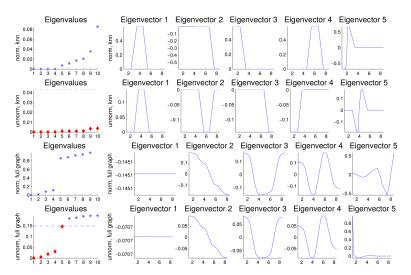


Spectral Clustering: 1D Example - Histogram



http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/publications/Luxburg07_tutorial.pdf

Spectral Clustering: 1D Example - Eigenvectors



Spectral Clustering: Bibliography

- M. Meila et al. "A random walks view of spectral segmentation". In: International Conference on Artificial Intelligence and Statistics (2001)
- L_{sym} Andrew Y Ng, Michael I Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm". In: Neural Information Processing Systems. 2001
- ▶ L_{rm} J Shi and J Malik. "Normalized Cuts and Image Segmentation". In: *IEEE Transactions on Pattern Analysis* and Machine Intelligence 22 (2000), pp. 888–905
- ► Things can go wrong with the relaxation: Daniel A. Spielman and Shang H. Teng. "Spectral partitioning works: Planar graphs and finite element meshes". In: *Linear Algebra and Its Applications* 421 (2007), pp. 284–305

Manifold Learning: Recap

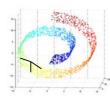
problem: definition reduction/manifold learning

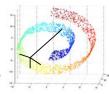
Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- ▶ What do we know about the dimensionality reduction
 - representation/visualization (2D or 3D)
 - ▶ an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$
 - feature extraction
 - linear vs. nonlinear dimensionality reduction
- ▶ What do we know about linear vs. nonlinear methods?
 - ▶ linear: ICA, PCA, SVD, ...
 - nonlinear often preserve only local distances

Manifold Learning: Linear vs. Non-linear

Manifold Learning: Preserving (just) local distances





$$d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j)$$
 only if $d(\mathbf{x}_i, \mathbf{x}_j)$ is small

$$\min \sum_{ij} w_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

Looks familiar?

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$Lf = \lambda Df$$

Step 2: Assign *m* new coordinates:

$$\mathbf{x}_i \mapsto (f_2(i), \dots, f_{m+1}(i))$$

Note₁: we need to get m+1 smallest eigenvectors

Note₂: \mathbf{f}_1 is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^{\mathsf{T}} \mathbf{L} \mathbf{f}$$
 s.t. $f_i \in \mathbb{R}$, $\mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{1} = 0$, $\mathbf{f}^{\mathsf{T}} \mathbf{D} \mathbf{f} = \mathbf{1}$

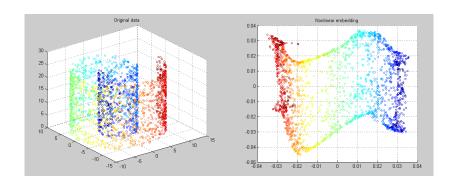
The meaning of the constraints is similar as for spectral clustering:

 $f^{\mathsf{T}}Df=1$ is for scaling

 $\mathbf{f}^\mathsf{T} \mathbf{D} \mathbf{1} = \mathbf{0}$ is to not get \mathbf{v}_1

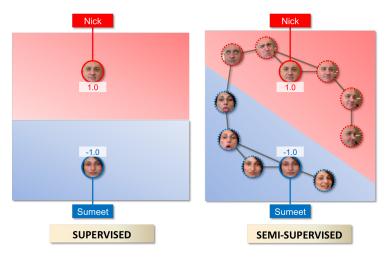
What is the solution?

Manifold Learning: Example



http://www.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning

Semi-supervised learning: How is it possible?



This is how children learn! hypothesis

Semi-supervised learning (SSL)

SSL problem: definition

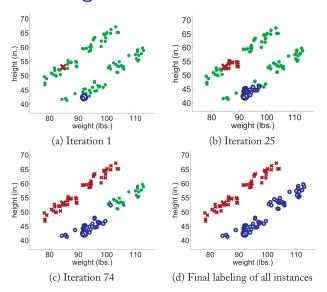
Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^n$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Some facts about **SSL**

- assumes that the unlabeled data is useful
- works with data geometry assumptions
 - cluster assumption low-density separation
 - manifold assumption
 - smoothness assumptions, generative models, . . .
- now it helps now, now it does not (sic)
 - provable cases when it helps
- ▶ inductive or transductive/out-of-sample extension

http://olivier.chapelle.cc/ssl-book/discussion.pdf

SSL: Self-Training



SSL: Overview: Self-Training

SSL: Self-Training

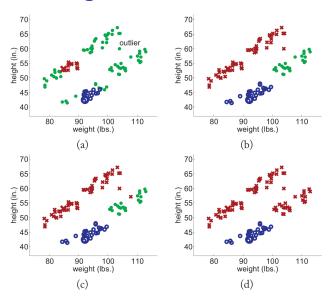
Input:
$$\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$$
 and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^{N}$ Repeat:

- ightharpoonup train f using \mathcal{L}
- ▶ apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- its a wrapper method
- heavily depends on the the internal classifier
- some theory exist for specific classifiers
- nobody uses it anymore
- errors propagate (unless the clusters are well separated)

SSL: Self-Training: Bad Case



Michal Valko michal.valko@inria.fr ENS Paris-Saclay, MVA 2016/2017 SequeL team, Inria Lille — Nord Europe

https://team.inria.fr/sequel/