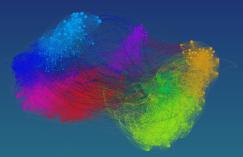


# **Graphs in Machine Learning**

Michal Valko

Inria Lille - Nord Europe, France

Partially based on material by: Tomáš Kocák



November 23, 2015 MVA 2015/2016

#### **Last Lecture**

- Examples of applications of online SSL
- Analysis of online SSL
- SSL Learnability
- When does graph-based SSL provably help?
- Scaling harmonic functions to millions of samples



#### **Previous Lab Session**

- ▶ 16. 11. 2015 by Daniele Calandriello
- Content
  - Semi-supervised learning
  - ► Graph quantization
  - Online face recognizer
- Short written report
- Questions to piazza
- Deadline: 30, 11, 2015
- http://researchers.lille.inria.fr/~calandri/teaching.html



#### This Lecture

- ▶ Online decision-making on graphs
- Graph bandits
- Smoothness of rewards (preferences) on a given graph
- Observability graphs
- Exploiting side information

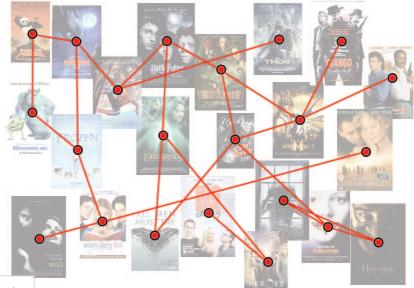


#### **Final Class projects**

- detailed description on the class website
- preferred option: you come up with the topic
- theory/implementation/review or a combination
- one or two people per project (exceptionally three)
- ▶ grade 60%: report + short presentation of the **team**
- deadlines
  - ▶ 23. 11. 2015 strongly recommended DL for taking projects
  - ▶ 30. 11. 2015 hard DL for taking projects
  - ▶ 06. 01. 2015 submission of the project report
  - ▶ 11. 01. 2016 (or later) project presentation
- list of suggested topics on piazza



#### **Online Decision Making on Graphs**



### Online Decision Making on Graphs: Smoothness

- Sequential decision making in structured settings
  - we are asked to pick a node (or a few nodes) in a graph
  - ▶ the graph encodes some **structural property** of the setting
  - goal: maximize the sum of the outcomes
  - application: recommender systems
- ► First application: Exploiting smoothness
  - fixed graph
  - iid outcomes
  - neighboring nodes have similar outcomes



### **Online Decision Making on Graphs**

#### Movie recommendation: (in each time step)

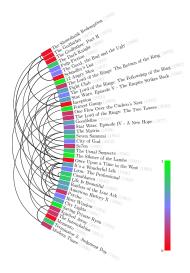
- Recommend movies to a single user.
- ▶ Good prediction after a few steps ( $T \ll N$ ).

#### Goal:

▶ Maximize overall reward (sum of ratings).

#### **Assumptions:**

- ▶ Unknown reward function  $f: V(G) \rightarrow \mathbb{R}$ .
- Function f is **smooth** on a graph.
- Neighboring movies ⇒ similar preferences.
- ► Similar preferences ⇒ neighboring movies.





#### Let's be lazy: Ignore the structure!



#### This is an multi-armed bandit problem!

The performance depends on the number of movies (N arms).

Worst case regret (to the best fixed strategy)  $R_T = \mathcal{O}\left(\sqrt{NT}\right)$ 

What is N for imdb.com? 3,538,545 http://www.imdb.com/stats



#### Let's be lazy: Ignore the structure!

Another problem of the typical bandits strategies for recommendation?

If there is no information shared, we need to try all of the options!

UCB/MOSS and likely TS start with pulling each of the arms once

This is a problem both algorithmically and theoretically . . . .

Watch all the movies and then I tell you which one you like . . . .

What do we need for movie recommendation?

An algorithm useful in the case  $T \ll N!$ 

Exploiting the structure is a must!



# Recap: Smooth graph functions

- $\mathbf{f} = (f_1, \dots, f_N)^{\mathsf{T}}$ : Vector of function values.
- ▶ Let  $\mathbf{L} = \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^{\mathsf{T}}$  be the eigendecomposition of the Laplacian.
  - Diagonal matrix Λ whose diagonal entries are eigenvalues of L.
  - ► Columns of **Q** are eigenvectors of **L**.
  - ► Columns of **Q** form a basis.
- lacktriangledown  $lpha^*$ : Unique vector such that  $\mathbf{Q}lpha^*=\mathbf{f}$  Note:  $\mathbf{Q}^{\mathsf{T}}\mathbf{f}=lpha^*$

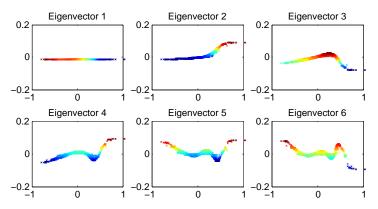
$$S_G(\mathbf{f}) = \mathbf{f}^\mathsf{T} \mathbf{L} \mathbf{f} = \mathbf{f}^\mathsf{T} \mathbf{Q} \mathbf{\Lambda} \mathbf{Q}^\mathsf{T} \mathbf{f} = \boldsymbol{\alpha}^{*\mathsf{T}} \mathbf{\Lambda} \boldsymbol{\alpha}^* = \|\boldsymbol{\alpha}^*\|_{\mathbf{\Lambda}}^2 = \sum_{i=1}^N \lambda_i (\alpha_i^*)^2$$

#### Smoothness and regularization: Small value of

(a) 
$$S_G(\mathbf{f})$$
 (b)  $\Lambda$  norm of  $\alpha^*$  (c)  $\alpha_i^*$  for large  $\lambda_i$ 



### Smooth graph functions: Flixster eigenvectors



Eigenvectors from the Flixster data corresponding to the smallest few eigenvalues of the graph Laplacian projected onto the first principal component of data. Colors indicate the values.



### **Online Learning Setting - Bandit Problem**

Learning setting for a bandit algorithm  $\pi$ 

- In each time t step choose a node  $\pi(t)$ .
- ▶ the  $\pi(t)$ -th row  $\mathbf{x}_{\pi(t)}$  of the matrix  $\mathbf{Q}$  corresponds to the arm  $\pi(t)$ .
- ▶ Obtain noisy reward  $r_t = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t$ . Note:  $\mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* = f_{\pi(t)}$ 
  - $\varepsilon_t$  is R-sub-Gaussian noise.  $\forall \xi \in \mathbb{R}, \mathbb{E}[e^{\xi \varepsilon_t}] \leq \exp(\xi^2 R^2/2)$
- ► Minimize cumulative regret

$$R_T = T \max_{a} (\mathbf{x}_{a}^{\mathsf{T}} \boldsymbol{\alpha}^*) - \sum_{t=1}^{T} \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^*.$$

What is a good result?

Can't we just use linear bandits?



# Online Decision Making on Graphs: Smoothness

- Linear bandit algorithms
  - ▶ LinUCB

(Li et al., 2010)

- Regret bound  $\approx D\sqrt{T \ln T}$
- LinearTS

(Agrawal and Goyal, 2013)

• Regret bound  $\approx D\sqrt{T \ln N}$ 

**Note:** D is ambient dimension, in our case N, length of  $x_i$ . Number of actions, e.g., all possible movies  $\rightarrow$  **HUGE!** 

- Spectral bandit algorithms
  - SpectralUCB

(Valko et al., ICML 2014)

- ▶ Regret bound  $\approx d\sqrt{T \ln T}$
- Operations per step: D<sup>2</sup>N
- SpectralTS

(Kocák et al., AAAI 2014)

- Regret bound  $\approx d\sqrt{T \ln N}$
- ▶ Operations per step:  $D^2 + DN$

**Note:** d is effective dimension, usually much smaller than D.



#### Effective dimension

**Effective dimension:** Largest *d* such that

$$(d-1)\lambda_d \leq \frac{T}{\log(1+T/\lambda)}.$$

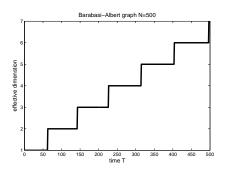
- Function of time horizon and graph properties
- $\triangleright$   $\lambda_i$ : *i*-th smallest eigenvalue of **Λ**.
- $\triangleright$   $\lambda$ : Regularization parameter of the algorithm.

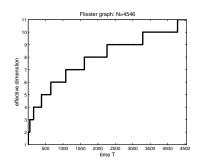
#### **Properties:**

- ▶ d is small when the coefficients  $\lambda_i$  grow rapidly above time.
- ▶ *d* is related to the number of "non-negligible" dimensions.
- ▶ Usually *d* is much smaller than *D* in real world graphs.
- ► Can be computed beforehand.



#### Effective dimension vs. Ambient dimension



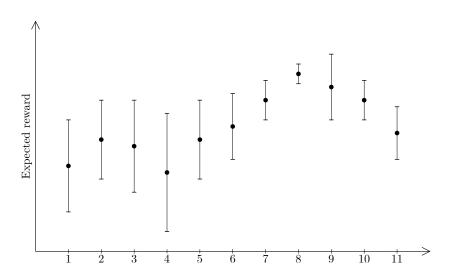


 $d \ll D$ 

Note: In our setting T < N = D.

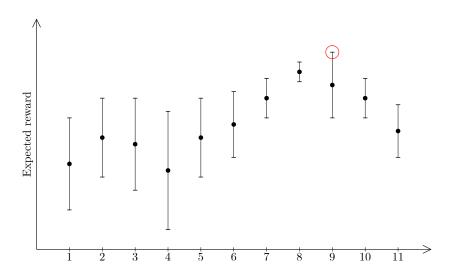


# **UCB-style algorithms: Estimate**



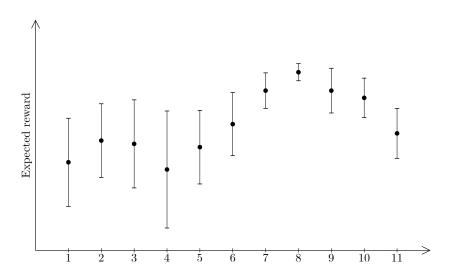


### **UCB-style algorithms:** Sample





### **UCB-style algorithms:** Estimate ...





### **SpectralUCB**

Given a vector of weights  $\alpha$ , we define its  $\Lambda$  norm as

$$\| oldsymbol{lpha} \|_{oldsymbol{\Lambda}} = \sqrt{\sum_{k=1}^N \lambda_k lpha_k^2} = \sqrt{oldsymbol{lpha}^{\scriptscriptstyle \mathsf{T}} oldsymbol{\Lambda} oldsymbol{lpha}},$$

and fit the ratings  $r_v$  with a (regularized) least-squares estimate

$$\widehat{m{lpha}}_t = \mathop{\mathsf{arg\,min}}_{m{lpha}} \left( \sum_{
u=1}^t \left[ \langle \mathbf{x}_
u, m{lpha} 
angle - \mathit{r}_
u 
ight]^2 + \|m{lpha}\|_{m{\Lambda}}^2 
ight).$$

 $\|lpha\|_{f \Lambda}$  is a penalty for non-smooth combinations of eigenvectors.

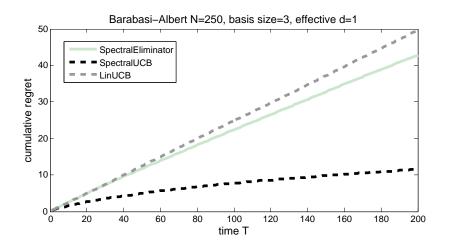


# **SpectralUCB**

```
1: Input:
  2: N, T, \{\Lambda_L, \mathbf{Q}\}, \lambda, \delta, R, C
  3: Run:
  4: \Lambda \leftarrow \Lambda_1 + \lambda I
  5: d \leftarrow \max\{d: (d-1)\lambda_d \leq T/\ln(1+T/\lambda)\}
  6: for t = 1 to T do
  7:
          Update the basis coefficients \widehat{\alpha}:
         \mathbf{X}_t \leftarrow [\mathbf{x}_{\pi(1)}, \dots, \mathbf{x}_{\pi(t-1)}]^\mathsf{T}
  8:
  9: \mathbf{r} \leftarrow [r_1, \dots, r_{t-1}]^\mathsf{T}
10: \mathbf{V}_t \leftarrow \mathbf{X}_t \mathbf{X}_t^\mathsf{T} + \mathbf{\Lambda}
11: \widehat{\boldsymbol{\alpha}}_t \leftarrow \mathbf{V}_t^{-1} \mathbf{X}_t^\mathsf{T} \mathbf{r}
12: c_t \leftarrow 2R\sqrt{d\ln(1+t/\lambda)+2\ln(1/\delta)}+C
           \pi(t) \leftarrow \operatorname{arg\,max}_{a} \left( \mathbf{x}_{a}^{\mathsf{T}} \widehat{\alpha} + c_{t} \| \mathbf{x}_{a} \|_{\mathbf{V}_{c}^{-1}} \right)
13:
14:
              Observe the reward r.
15: end for
```

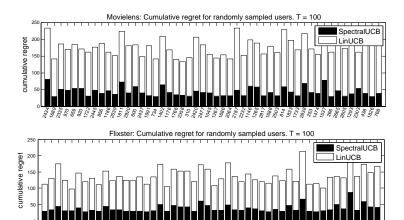


# **SpectralUCB: Synthetic experiment**





### **SpectralUCB: Movie data experiments**





- d: Effective dimension.
- ▶  $\lambda$ : Minimal eigenvalue of  $\Lambda = \Lambda_L + \lambda I$ .
- ► *C*: Smoothness upper bound,  $\|\alpha^*\|_{\Lambda} \leq C$ .
- $\mathbf{x}_{i}^{\mathsf{T}} \boldsymbol{\alpha}^{*} \in [-1, 1]$  for all i.

The **cumulative regret**  $R_T$  of **SpectralUCB** is with probability  $1-\delta$  bounded as

$$R_{\mathcal{T}} \leq \left(8R\sqrt{d\ln\frac{\lambda+\mathcal{T}}{\lambda} + 2\ln\frac{1}{\delta}} + 4\mathcal{C} + 4\right)\sqrt{d\mathcal{T}\ln\frac{\lambda+\mathcal{T}}{\lambda}}.$$

$$R_T \approx d\sqrt{T \ln T}$$



- ▶ Derivation of the confidence ellipsoid for  $\widehat{\alpha}$  with probability  $1 \delta$ .
  - ▶ Using analysis of OFUL (Abbasi-Yadkori et al., 2011)

$$|\mathbf{x}^{\mathsf{T}}(\widehat{\alpha} - \boldsymbol{\alpha}^*)| \leq \|\mathbf{x}\|_{\mathbf{V}_t^{-1}} \ \left( R \sqrt{2 \ln \left( \frac{|\mathbf{V}_t|^{1/2}}{\delta |\mathbf{\Lambda}|^{1/2}} \right)} + C \right)$$

► Regret in one time step:  $r_t = \mathbf{x}_*^\mathsf{T} \boldsymbol{\alpha}^* - \mathbf{x}_\pi^\mathsf{T} t_t) \boldsymbol{\alpha}^* \leq 2c_t \|\mathbf{x}_{\pi(t)}\|_{\mathbf{V}_t^{-1}}$ 

Cumulative regret:

$$R_T = \sum_{t=1}^{T} r_t \le \sqrt{T \sum_{t=1}^{T} r_t^2} \le 2(\frac{1}{C_T} + 1) \sqrt{2T \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|}}$$

▶ Upperbound for  $ln(|\mathbf{V}_t|/|\mathbf{\Lambda}|)$ 

$$\ln \frac{|\mathbf{V}_t|}{|\mathbf{\Lambda}|} \leq \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|} \leq 2d \ln \left(\frac{\lambda + T}{\lambda}\right)$$



#### Sylvester's determinant theorem:

$$|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}||\mathbf{I} + \mathbf{A}^{-1}\mathbf{x}\mathbf{x}^{\mathsf{T}}| = |\mathbf{A}|(1 + \mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x})$$

#### Goal:

- ▶ Upperbound determinant  $|\mathbf{A} + \mathbf{x}\mathbf{x}^{\mathsf{T}}|$  for  $\|\mathbf{x}\|_2 \leq 1$
- ► Upperbound  $\mathbf{x}^{\mathsf{T}}\mathbf{A}^{-1}\mathbf{x}$

$$\mathbf{x}^{\scriptscriptstyle\mathsf{T}} \mathbf{A}^{-1} \mathbf{x} = \mathbf{x}^{\scriptscriptstyle\mathsf{T}} \mathbf{Q} \mathbf{\Lambda}^{-1} \mathbf{Q}^{\scriptscriptstyle\mathsf{T}} \mathbf{x} = \mathbf{y}^{\scriptscriptstyle\mathsf{T}} \mathbf{\Lambda}^{-1} \mathbf{y} = \sum_{i=1}^N \lambda_i^{-1} y_i^2$$

- ▶  $\|\mathbf{y}\|_2 \le 1$ .
- **y** is a canonical vector.
- $\mathbf{x} = \mathbf{Q}\mathbf{y}$  is an eigenvector of  $\mathbf{A}$ .



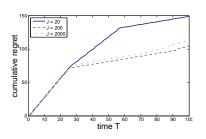
**Corollary**: Determinant  $|\mathbf{V}_T|$  of  $\mathbf{V}_T = \mathbf{\Lambda} + \sum_{t=1}^T \mathbf{x}_t \mathbf{x}_t^\mathsf{T}$  is maximized when all  $\mathbf{x}_t$  are aligned with axes.

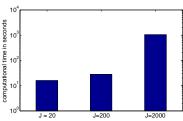
$$\begin{split} |\mathbf{V}_T| &\leq \max_{\sum t_i = T} \prod (\lambda_i + t_i) \\ \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|} &\leq \max_{\sum t_i = T} \sum \ln \left(1 + \frac{t_i}{\lambda_i}\right) \\ \ln \frac{|\mathbf{V}_T|}{|\mathbf{\Lambda}|} &\leq \sum_{i=1}^d \ln \left(1 + \frac{T}{\lambda}\right) + \sum_{i=d+1}^N \ln \left(1 + \frac{t_i}{\lambda_{d+1}}\right) \\ &\leq \frac{d}{\ln \left(1 + \frac{T}{\lambda}\right)} + \frac{T}{\lambda_{d+1}} \\ &\leq 2\frac{d}{\ln \left(1 + \frac{T}{\lambda}\right)} \end{split}$$



#### SpectralUCB: Improving the running time

- ▶ **Reduced basis:** We only need first few eigenvectors.
- ▶ **Getting** J **eigenvectors:**  $\mathcal{O}(Jm \log m)$  time for m edges
- Computationally less expensive, comparable performance.





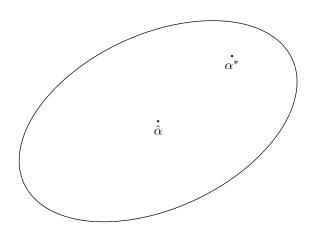


#### SpectralUCB: How to make it even faster?

- ▶ UCB-style algorithms need to (re)-compute UCBs every t
- ▶ Can be a problem for large set of arms  $\rightarrow D^2N \rightarrow N^3$
- Optimistic (UCB) approach vs. Thompson Sampling
  - ▶ Play the arm maximizing probability of being the best
    - ▶ Sample  $\widetilde{\alpha}$  from the distribution  $\mathcal{N}(\widehat{\alpha}, v^2\mathbf{V}^{-1})$
    - Play arm which maximizes  $\mathbf{x}^{\mathsf{T}}\widetilde{\alpha}$  and observe reward
  - Compute posterior distribution according to reward received
- ▶ Only requires  $D^2 + DN \rightarrow N^2$  per step update

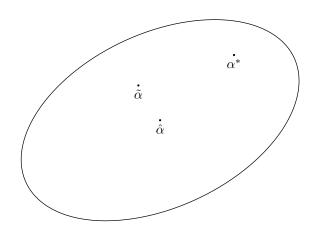


### **Thomson Sampling: Estimate**



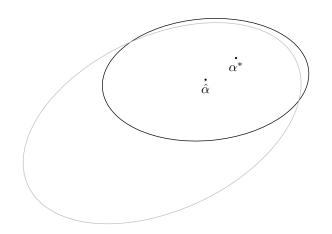


# **Thomson Sampling: Sample**



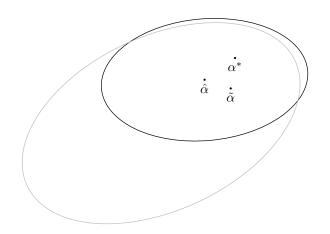


### **Thomson Sampling: Estimate**



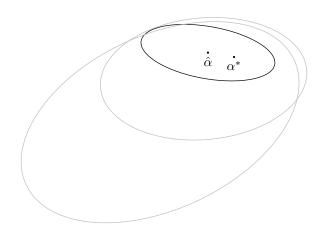


### **Thomson Sampling: Sample**





### **Thomson Sampling: Estimate ...**





# **SpectralTS for Graphs**

```
1: Input:
  2: N, T, \{\Lambda_L, \mathbf{Q}\}, \lambda, \delta, R. C
  3: Initialization:
  4: v = R\sqrt{6d\log((\lambda + T)/\delta\lambda)} + C
  5: \hat{\alpha} = 0_{N}
  6: \mathbf{f} = 0_N
  7: \mathbf{V} = \mathbf{\Lambda}_{\mathbf{I}} + \lambda \mathbf{I}_{N}
  8: Run:
  9: for t = 1 to T do
10:
         Sample \widetilde{\alpha} \sim \mathcal{N}(\widehat{\alpha}, v^2 \mathbf{V}^{-1})
11: \pi(t) \leftarrow \arg\max_{a} \mathbf{x}_{a}^{\mathsf{T}} \widetilde{\alpha}
12: Observe a noisy reward r(t) = \mathbf{x}_{\pi(t)}^{\mathsf{T}} \boldsymbol{\alpha}^* + \varepsilon_t
13: \mathbf{f} \leftarrow \mathbf{f} + \mathbf{x}_{\pi(t)} r(t)
14: Update \mathbf{V} \leftarrow \mathbf{V} + \mathbf{x}_{\pi(t)} \mathbf{x}_{\pi(t)}^{\mathsf{T}}
15:
          Update \widehat{\alpha} \leftarrow \mathbf{V}^{-1}\mathbf{f}
16: end for
```



# SpectralTS: Regret bound

- d: Effective dimension.
- ▶  $\lambda$ : Minimal eigenvalue of  $\Lambda = \Lambda_L + \lambda I$ .
- ▶ *C*: Smoothness upper bound,  $\|\alpha^*\|_{\Lambda} \leq C$ .
- $\mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha}^* \in [-1, 1]$  for all i.

The **cumulative regret**  $R_T$  of **SpectralTS** is with probability  $1-\delta$  bounded as

$$\mathcal{R}_{\mathcal{T}} \leq \frac{11g}{\rho} \sqrt{\frac{4+4\lambda}{\lambda}} d T \log \frac{\lambda+T}{\lambda} + \frac{1}{T} + \frac{g}{\rho} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2 T \log \frac{2}{\delta}},$$

where  $p=1/(4e\sqrt{\pi})$  and

$$g = \sqrt{4\log TN} \left( R \sqrt{6d\log \left(\frac{\lambda + T}{\delta \lambda}\right)} + C \right) + R \sqrt{2d\log \left(\frac{(\lambda + T)T^2}{\delta \lambda}\right)} + C.$$

$$R_T \approx d\sqrt{T \log N}$$



### SpectralTS: Analysis sketch

#### Divide arms into two groups

- $lackbox{\Delta}_i = \mathbf{x}_*^{\mathsf{T}} \boldsymbol{\alpha} \mathbf{x}_i^{\mathsf{T}} \boldsymbol{\alpha} \leq g \|\mathbf{x}_i\|_{\mathbf{V}_-^{-1}}$  arm i is unsaturated
- $lackbox{\Delta}_i = \mathbf{x}_*^{\mathsf{T}} \alpha \mathbf{x}_i^{\mathsf{T}} \alpha > g \|\mathbf{x}_i\|_{\mathbf{V}_*^{-1}}$  arm i is saturated

#### Saturated arm

- ▶ Small standard deviation → accurate regret estimate.
- ▶ High regret on playing the arm → Low probability of picking

#### Unsaturated arm

- ▶ Low regret bounded by a factor of standard deviation
- ► High probability of picking



#### SpectralTS: Analysis sketch

- ▶ Confidence ellipsoid for estimate  $\widehat{\mu}$  of  $\mu$  (with probability  $1 \delta/T^2$ )
  - ▶ Using analysis of OFUL algorithm (Abbasi-Yadkori et al., 2011)

$$|\mathbf{x}_i^{\mathsf{T}}\widehat{\boldsymbol{\alpha}} - \mathbf{x}_i^{\mathsf{T}}\boldsymbol{\alpha}| \leq \left(R\sqrt{2\, d\log\left(\frac{(\lambda + \mathcal{T})\mathcal{T}^2}{\delta\lambda}\right)} + C\right)\|\mathbf{x}_i\|_{\mathbf{V}_t^{-1}} = \ell\|\mathbf{x}_i\|_{\mathbf{V}_t^{-1}}$$

The key result coming from spectral properties of V<sub>t</sub>.

$$\log rac{|\mathbf{V}_t|}{|\mathbf{\Lambda}|} \leq 2d \log \left(1 + rac{T}{\lambda}
ight)$$

- Concentration of sample  $\widetilde{\alpha}$  around mean  $\widehat{\alpha}$  (with probability  $1-1/T^2$ )
  - Using concentration inequality for Gaussian random variable.

$$|\mathbf{x}_{i}^{\mathsf{T}}\widetilde{\alpha} - \mathbf{x}_{i}^{\mathsf{T}}\widehat{\alpha}| \leq \left(R\sqrt{6d\log\left(\frac{\lambda + T}{\delta\lambda}\right)} + C\right)\|\mathbf{x}_{i}\|_{\mathbf{V}_{t}^{-1}}\sqrt{4\log(TN)} = v\|\mathbf{x}_{i}\|_{\mathbf{V}_{t}^{-1}}\sqrt{4\log(TN)}$$



# SpectralTS: Analysis sketch

**Define** regret'(t) = regret(t) ·  $\mathbb{1}\{|\mathbf{x}_i^{\mathsf{T}}\widehat{\alpha}(t) - \mathbf{x}_i^{\mathsf{T}}\alpha| \leq \ell \|\mathbf{x}_i\|_{\mathbf{V}_{\bullet}^{-1}}\}$ 

$$\operatorname{\mathsf{regret}}'(t) \leq rac{11g}{p} \|\mathbf{x}_{s(t)}\|_{\mathbf{V}_t^{-1}} + rac{1}{\mathcal{T}^2}$$

**Super-martingale** (i.e.  $\mathbb{E}[Y_t - Y_{t-1} | \mathcal{F}_{t-1}] \leq 0$ )

$$\begin{split} X_t &= \mathsf{regret}'(t) - \frac{11g}{p} \|\mathbf{x}_{\mathsf{a}(t)}\|_{\mathbf{V}_t^{-1}} - \frac{1}{T^2} \\ Y_t &= \sum_{w=1}^t X_w. \end{split}$$

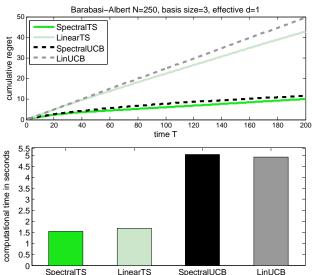
 $(Y_t; t = 0, ..., T)$  is a super-martingale process w.r.t. history  $\mathcal{F}_t$ .

Azuma-Hoeffding inequality for super-martingales, w.p.  $1 - \delta/2$ :

$$\sum_{t=1}^{T} \mathsf{regret'}(t) \leq \frac{11g}{p} \sum_{t=1}^{T} \|\mathbf{x}_{a(t)}\|_{\mathbf{V}_{t}^{-1}} + \frac{1}{T} + \frac{g}{p} \left(\frac{11}{\sqrt{\lambda}} + 2\right) \sqrt{2T \ln \frac{2}{\delta}}$$



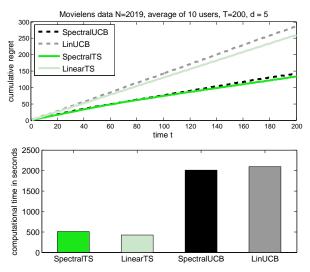
# **Spectral Bandits: Synthetic experiment**





# Spectral Bandits: Real world experiment

MovieLens dataset of 6k users who rated one million movies.





### **Spectral Bandits Summary**

- Spectral bandit setting (smooth graph functions).
- ► SpectralUCB
  - ▶ Regret bound  $R_T = \widetilde{\mathcal{O}}\left(\frac{d\sqrt{T \ln T}}{}\right)$
- ► SpectralTS
  - Regret bound  $R_T = \widetilde{\mathcal{O}}\left(\frac{d}{\sqrt{T \ln N}}\right)$
  - Computationally more efficient.
- ► SpectralEliminator
  - Regret bound  $R_T = \widetilde{\mathcal{O}}\left(\sqrt{dT \ln T}\right)$
  - ▶ Better upper, empirically does not seem to work well (yet)
- ▶ Bounds scale with **effective dimension**  $d \ll D$ .



# SpectralEliminator: Pseudocode

```
Input:
     N: the number of nodes, T: the number of pulls
     \{\Lambda_I, Q\} spectral basis of L
     \lambda: regularization parameter
    \beta, \{t_i\}_{i=1}^{J} parameters of the elimination and phases
A_1 \leftarrow \{\mathbf{x}_1, \dots, \mathbf{x}_K\}.
for i = 1 to J do
    V_{t_i} \leftarrow \gamma \Lambda_L + \lambda I
     for t = t_i to min(t_{i+1} - 1, T) do
         Play \mathbf{x}_t \in A_i with the largest width to observe r_t:
              \mathbf{x}_t \leftarrow \arg\max_{\mathbf{x} \in A_i} \|\mathbf{x}\|_{\mathbf{V}^{-1}}
         V_{t+1} \leftarrow V_t + x_t x_t^T
     end for
     Eliminate the arms that are not promising:
    \widehat{\boldsymbol{lpha}}_t \leftarrow \mathbf{V}_t^{-1}[\mathbf{x}_{t_i}, \dots, \mathbf{x}_t][r_{t_i}, \dots, r_t]^{\mathsf{T}}
    A_{j+1} \leftarrow \left\{ \mathbf{x} \in A_j, \langle \widehat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle + \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \ge \max_{\mathbf{x} \in A_j} \left[ \langle \widehat{\boldsymbol{\alpha}}_t, \mathbf{x} \rangle - \|\mathbf{x}\|_{V_{\bullet}^{-1}} \beta \right] \right\}
```

Ínría

end for

### **SpectralEliminator: Analysis**

#### **SpectralEliminator**

- ▶ Divide time into sets  $(t_1 = 1 \le t_2 \le ...)$  to introduce independence for Azuma-Hoeffding inequality and observe  $R_T \le \sum_{j=0}^J (t_{j+1} t_j) \left[ \langle \mathbf{x}^* \mathbf{x}_t, \widehat{\alpha}_j \rangle + (\|\mathbf{x}^*\|_{\mathbf{V}_i^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_i^{-1}}) \beta \right]$
- ▶ Bound  $\langle \mathbf{x}^* \mathbf{x}_t, \widehat{\alpha}_j \rangle$  for each phase
- ▶ No bad arms:  $\langle \mathbf{x}^* \mathbf{x}_t, \widehat{\alpha}_j \rangle \le (\|\mathbf{x}^*\|_{\mathbf{V}_i^{-1}} + \|\mathbf{x}_t\|_{\mathbf{V}_i^{-1}})\beta$
- ▶ By algorithm:  $\|\mathbf{x}\|_{\mathbf{V}_{j}^{-1}}^{2} \leq \frac{1}{t_{j}-t_{j-1}} \sum_{s=t_{j-1}+1}^{t_{j}} \|\mathbf{x}_{s}\|_{\mathbf{V}_{s-1}^{-1}}^{2}$
- lacksquare  $\sum_{s=t_{j-1}+1}^{t_j} \min\left(1, \|\mathbf{x}_s\|_{\mathbf{V}_{s-1}^{-1}}^2\right) \leq \log rac{|\mathbf{V}_j|}{|\mathbf{\Lambda}|}$



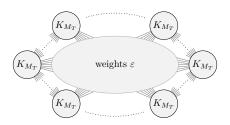
### Spectral Bandits: Is it possible to do better?

Is *d* a good quantity that embodies the difficulty?

Lower bound!

For any d, we construct a graph that for any reasonable algorithm, the regret is at least  $\Omega(\sqrt{dT})$ .

How? By reduction to *d*-arm bandits problem.





Michal Valko

michal.valko@inria.fr

sequel.lille.inria.fr

 ${\sf SequeL-Inria\ Lille}$ 

MVA 2015/2016