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About this Session
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1



Graphs in Machine Learning TD2: Semi-Supervised Learning

1 Harmonic Function Solution (HFS)

Semi-supervised learning (SSL) studies learning from both labeled and unlabeled examples. This
paradigm is useful for real-world problems where data is abundant but labeling resources are limited.

1.1 Notation

• G = (V,E) is a weighted graph where V = {x1, . . . , xn} is the vertex set and E is the edge set

• Each edge eij ∈ E has weight wij . If no edge exists, wij = 0.

• Each node has label yi ∈ R.

• Only subset S ⊂ V , |S| = l of node labels are revealed; the remaining u = n − l nodes are in
subset T = V \S.

We wish to predict values of vertices in T by exploiting graph structure. Since we believe close
nodes (similar) should share similar labels, each node should be surrounded by nodes with the same
label.

For recovered labels encoded in vector f ∈ Rn:

fi =

∑
i∼j fjwij∑
i∼j wij

(1)

where fi = f(xi).

1.2 Random Walk Interpretation

If weight wij expresses moving tendency from xi to xj , transition probabilities are:

P (j|i) = wij∑
k wik

(2)

A stationary distribution gives a valid solution.

1.3 Smoothness Preference

This can be expressed as a penalty on non-smooth solutions using Laplacian L:

Ω(f) =
∑
i∼j

wij(fi − fj)
2 = fTLf (3)

Initially, we assume labeled data is always correct and enforce labels exactly. This promotes smooth-
ness on unlabeled points while guaranteeing correct labels:
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min
f∈Rn

n∑
i,j=1

wij (f(xi)− f(xj))
2

s.t. yi = f(xi) ∀i = 1, . . . , l

Questions

1. Complete hard_hfs and two_moons_hfs. Select uniformly 4 labels (S), compute labels
for unlabeled nodes (T ) using hard-HFS. Plot resulting labeling and accuracy.

2. At home, run two_moons_hfs using data_2moons_large.mat (1000 samples). Sample
only 4 labels. What can go wrong?

1.4 Soft-HFS

When labels are noisy or some samples are mislabeled, relabeling might be beneficial. Soft-HFS
balances smoothness and satisfying training labels.

Define C and y as:

Cii =

{
cl for labeled examples
cu otherwise

yi =

{
true label for labeled examples
0 otherwise

(4)

Soft-HFS objective:
min
f∈Rn

(f − y)⊤C(f − y) + f⊤Lf (5)

Questions

1. Complete soft_hfs and test with two_moons_hfs. Complete hard_vs_soft_hfs. Com-
pare soft-HFS and hard-HFS results.

2 Face Recognition with HFS

We apply HFS to face recognition—classifying faces as different persons. Since faces share common
features, we leverage large quantities of unlabeled data to improve accuracy.

Complete offline_face_recognition to classify faces and plot results.
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Questions

1. How did you manage to label more than two classes?

2. Which preprocessing steps (e.g., cv.GaussianBlur, cv.equalizeHist) did you apply be-
fore constructing the similarity graph? Which gave best performance?

3. Does HFS reach good performance on this task?

2.1 Dataset Augmentation

Try augmenting the dataset with more unlabeled data. In extended_dataset.tar.gz you’ll find
additional pictures to expand the dataset.

Modify offline_face_recognition_augmented for your extended dataset:

Questions

1. Did adding more data improve performance? If so, which kind?

2. If performance doesn’t improve, justify why. Which additional data degrades performance
instead of improving it?

3 Online SSL

SSL is designed for problems where collecting large supervised training data is difficult, but obtaining
unlabeled samples from the same process is inexpensive.

In stream processing, few labeled examples are provided initially to set the system bias while
unlabeled examples are gathered online and update the bias continuously.

3.1 Computational Challenges

In online learning, after the game starts we don’t observe any more true labels yt. To adapt to
environment changes, we rely on indirect feedback like data structure.

When t becomes large, naive hard-HFS (recomputing from scratch) has prohibitive costs. In stream-
ing settings with near real-time requirements, we need scalable time and memory costs.

Since most HFS operations scale with nodes, subsampling is effective: compute approximate solu-
tions on smaller subsets that generalize well.

Incremental k-centers [? ] guarantees on distortion allow us to provide theoretical guarantees.
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Algorithm 1 Incremental k-centers
1: Input: unlabeled xt, centroids Ct−1, multiplicities vt−1, taboo list b
2: if (|Ct−1| = k) then
3: c1, c2 ← two closest centroids with at least one not in b
4: // Decide crep (represents both) and cadd (represents xt)
5: if c1 in b then
6: crep ← c1, cadd ← c2
7: else if c2 in b then
8: crep ← c2, cadd ← c1
9: else if vt−1(c2) ≤ vt−1(c1) then

10: crep ← c1, cadd ← c2
11: else
12: crep ← c2, cadd ← c1
13: end if
14: vt ← vt−1

15: vt(crep)← vt(crep) + vt(cadd)
16: cadd ← xt, vt(cadd) = 1
17: else
18: Ct ← Ct−1.append(xt)
19: vt ← vt−1.append(1)
20: end if

Algorithm 2 Online HFS with Graph Quantization
1: Input: t, centroids Ct, multiplicities vt, labels y
2: V ← diag(vt)
3: [W̃q]ij ← weight between centroids i and j

4: Compute Laplacian L of graph represented by Wq = V W̃qV
5: // Infer labels using hard-HFS
6: ŷt ← hardHFS(L, y)
7: // Remark: xt is always present in reduced graph and doesn’t share centroids

3.2 Practical Considerations

Implementation

• Labeled nodes are fundamentally different. Keep them separate, never merge. Taboo list
b tracks nodes that cannot be merged.

• In streaming, it’s preferable to pay small cost at every step for smooth execution. Centroids
update at every step.

• When a new node arrives with too many centroids, we choose two closest centroids cadd
and crep. cadd forgets the old centroid and points to new sample; crep represents all nodes
that belonged to cadd.

Use create_user_profile in helper_online_ssl.py to capture training set of your face and some-
one else’s. Faces are preprocessed and saved in data/faces, loaded by online_face_recognition.
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Questions

1. Complete online_ssl_update_centroids using Algorithm 1.

2. Complete online_ssl_compute_solution following Algorithm 2.

3. Read preprocess_face in helper_online_ssl.py and run online_face_recognition.
Include resulting frames (not too similar) showing faces correctly labeled, commenting on
implementation choices.

4. What happens if an unknown person’s face is captured? Modify code to disregard unrec-
ognizable faces. Include frames showing unknown faces correctly labeled as unknown.
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