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About this Session

In this practical session we will cover fundamental graph building techniques, and apply
them to the Spectral Clustering problem. The session will be evaluated on a short written
report and a final image segmentation implementation. During the TD we will implement
all the necessary tools to do the segmentation and answer the report questions. All the code
related to the TD must be submitted, to provide background for the image segmentation
code evaluation.
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1 Graph Construction

The file generate_data.py contains functions that will generate artificial data for the experiments,
as described below. You can run the script to visualize the data.

Instructions

Dataset Types:

e N-Blob: Sample random points in R? according to N Gaussian distributions with mean
i = [cos(2mi/N),sin(27i/N)] and variance Diag(o?).

e Two Moons: Sample random points shaped as two intertwined moons.

e Point and Circle: Sample random points from a concentrated Gaussian point in the
middle and a wide circle around it.
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A prerequisite to build a similarity graph is to define a similarity function to score the distance
between nodes in the graph. For the rest of the session we will use an inverse exponential function
as the similarity measure, controlled by the Euclidean distance:
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The variance o“ controls the bandwidth of the similarity.

1.1 Implementation Tasks

In the file build_similarity_graph.py, complete the following:

e Write the code to build an e-graph and a (OR) k-nn graph. Details are in the source code.

e Use plot_similarity_graph to visualize the graph for generated data. The function plot_
graph_matrix in utils.py may be useful.

e Complete the function how_to_choose_epsilon. You may use min_span_tree in utils.py.

1. What is the purpose of the option parameter in worst_case_blob?

2. What happens when you change the generating parameter of worst_case_blob in how_
to_choose_epsilon? What if the parameter is very large?

3. Using plot_similarity_graph, compare k-nn to ¢ graphs. When is it easier to build a
connected graph using k-nn? When using € graphs?
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2 Spectral Clustering

In the file spectral_clustering.py, complete:

e build_laplacian

e spectral_clustering

1. Build a graph from two_blobs_clustering data, keeping the graph connected. Motivate
your eigenvector choices and how you computed clustering assignments. Compare with
built-in k-means.

2. Build a graph from two_blobs_clustering, but make the two components separate. How

do you choose eigenvectors? Motivate your answer.
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2.1 Adaptive Eigenvector Selection

Complete spectral_clustering_adaptive, which uses choose_eig_function.

1. Look at find_the_bend. Generate 4-blob data with o2 = 0.03. Plot the first 15 eigenval-
ues. Complete choose_eig_function to automatically choose the number of eigenvectors.
The rule must adapt to actual eigenvalues.

2. Increase variance to o2 = 0.20 while plotting eigenvalues. Use choose_eig_function. Do
you see any difference?

3. When building cluster assignments, did you use thresholding, k-means or both? When to
use each?

4. What is another use of eigenvalue distributions during clustering, beside choosing eigen-

vectors?
\_ _J

2.2 Complex Structures

Complete:

e two_moons_clustering

e point_and_circle_clustering
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1. Plot results using spectral clustering and k-means in two_moons_clustering. Notice
differences? Explain considering graph structure.

2. In point_and_circle_clustering, compare spectral clustering using normal Laplacian
L and random-walk regularized Laplacian L,,,. Notice differences? Explain considering
graph structure.
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2.3 Parameter Sensitivity

How did you choose parameters when building the graph? We’ll compare clustering solutions while
changing parameters. We use the Adjusted Rand Index [? | to evaluate assignments, which outputs
values between 0 (unrelated) and 1 (equal).

Questions

1. Complete parameter_sensitivity, and generate a plot of the ARI index while varying

one parameter in graph construction (¢ or k). Comment on spectral clustering stability.

2. Without access to true labels, how could we evaluate clustering results?

3 Image Segmentation

Your final task is implementing image segmentation using spectral clustering. Complete image_
segmentation.py.

Instructions

Pointers:

e Images are 50 x 50 pixels RGB in the data folder. The image is loaded as 50 x 50 x 3
matrix, converted to 2500 x 3 where each pixel is an R? vector in RGB space.

e Images can be segmented using colors. Build a graph based on color distance between

pixels and cluster them.
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The function image_segmentation will plot your segmentation. Colors might be arbitrary since
clustering labels are arbitrary—separation correctness is what matters.
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Final Questions:

1. Document your implementation choices. Well-written, well-commented code is sufficient.
Include all related code in submission.

2. A full graph on 50 x 50 image has 502 nodes. Eigenvalue solving scales as O(23*) (seconds
to minutes on weak hardware). Full HD (1920 x 1080) scales as O(2%4) (about a month).
A full graph on millions of nodes requires 1TB memory. Can you think of two simple
techniques to reduce computational and memory cost?

3. Did you use eig or eigs? What’s the difference? How do they scale to large graphs?
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