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PREVIOUS LECTURE

4image credits: Srivastava

Questions?



MEET THE QUEEN!
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What? Internships (6 months) and PhD positions (3 years)
When? From March 2019 (internships) and October 2019 (PhD)
Where? London, UK
With who? Dr. Benjamin Guedj (researcher @Inria @UCL)
What for? Invention, analysis, implementation of an agnostic
learning framework through the use of the PAC-Bayesian theory
Huh? PAC-what? Check out the NIPS 2017 workshop!

https://bguedj.github.io

BEAGLE positions - B. Guedj - 1



THIS LECTURE LAST LECTURE OF THE COURSE
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This Lecture

I Graph bandits
I Spectral bandits

I Observability graphs

I Side information

I Influence Maximization

Michal Valko – Graphs in Machine Learning SequeL - 3/75

MULTI-ARM BANDITS IN LAS VEGAS 
DECEMBER 2017 

RL/BANDITS ~ SEQUENTIAL DECISION-MAKING

unsupervised - supervised-semisupervised-active

ps: several course projects are on this topic
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Example of a graph bandit problem

movie recommendation 

recommend movies to a single user 

goal: maximise the sum of the ratings  
(minimise regret) 

good prediction after just a few steps 

extra information  

ratings are smooth on a graph 

main question: can we learn faster?
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GETTING REAL

Let’s be lazy and ignore the structure 

Multi-armed bandit problem! 

Worst case regret (to the best fixed strategy) 

Matching lower bound (Auer, Cesa-Bianchi, Freund, Schapire 2002)   

How big is N?  Number of movies on http://www.imdb.com/stats:   4,029,967  

Problem:  Too many actions!

#actions

#rounds
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LEARNING FASTER

Arm independence is too strong and unnecessary 

Replace N with something much smaller 

problem/instance/data dependent 

example: linear bandits  N to D 

Today: Graph Bandits! 

sequential problems where actions are nodes on a graph 

find strategies that replace N with a smaller graph-dependent quantity

#actions

#rounds

#dimensions
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GRAPH BANDITS: GENERAL SETUP

Graph bandits: Side observations
Learning setting

In each time step t = 1, . . . ,T
I Environment (adversary):

I Privately assigns losses to actions
I Generates an observation graph

I
Undirected / Directed

I
Disclosed / Not disclosed

I Learner:
I Plays action It 2 [N]
I Obtain loss `t,It of action played
I Observe losses of neighbors of It

I
Graph: disclosed

I Performance measure: Total expected regret

RT = max
i2[N]

E
" TX

t=1

(`t,It � `t,i)

#
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Every round t the learner 

picks a node 

incurs a loss 

optional feedback 

The performance is total expected regret

Specific problems differ in 

1. loss 

2. feedback 

3. guarantees
11



UPPER CONFIDENCE BOUND BASED ALGOS
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MULTI-ARM BANDITS IN CAFÉ CULTURE  
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Video recorded March 30th, 2015, 13h50, 
Université de Lille, Susie & the Piggy Bones Band



UPPER CONFIDENCE BOUND BASED ALGOS
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UPPER CONFIDENCE BOUND BASED ALGOS
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5. Polymatroid bandits

In this chapter, we first introduce polymatroids and illustrate them on practical problems. We use
the problem of the minimum-cost flow (Megiddo 1974) on a network as an illustrative example
before we give the formal definition of polymatroids and learning with them.

⌅ Example 5.1 Consider a flow network with L source nodes and one sink node. The network is
illustrated in Figure 5.1.

Source'1' Source'2'

1'1'

1.5' 1.5'

1.5'

K'

...'
Source'3' Source'4'

1'1'

Source'L'0'1' Source'L'

1'1'

Figure 5.1: The flow network contains L source nodes and the maximum flow is K. The capacity of
the link is shown next to the link.

The network is defined by three constraints. First, the maximum flow through any source node
is 1. Second, the maximum flow through any two consecutive source nodes, e and e+ 1 where
e = 2i�1 for i 2 {1, . . . ,L/2}, is 3

2 . Third, the maximum flow is K. We assume that K is an integer
multiple of 3

2 . The cost of the flow from source node e is a Bernoulli random variable with mean:

w(e) =
⇢

0.5�D/2 e  4
3 K

0.5+D/2 otherwise. (5.1)

STRUCTURES IN BANDIT PROBLEMS
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GRAPHS

POLYMATROIDS

BLACK-BOX FUNCTIONS

KERNELS

STRUCTURES WITHOUT TOPOLOGY

…

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015

The bandit problem considered

Simple regret for infinitely
many armed bandit

I Mean reservoir distr. F bounded
by µ̄⇤

I Limited sampling resources n

At time t  n one can either

I sample a new arm ⌫Kt from the
reservoir distr. with mean
µKt ⇠ F , and set It = Kt,

I or choose an arm It among the
Kt�1

observed arms {⌫k}kKt�1 ,

and then collect Xt ⇠ ⌫kt

Objective: after n rounds, return an
arm bk whose mean µbk is as large as
possible. Minimize the simple regret

rn = µ̄⇤ � µbk,

where µ̄⇤ is the right end point of
1� F .

At time t...:

1 - Mean reservoir distribution

Arm 1 Arm 2 Arm 3

Arm 4 Arm 5

Arm 6

etc...

A. Carpentier and M. Valko Simple regret for IMAB - ICML 2015



SPECIFIC GRAPH BANDIT SETTINGS

smoothness spectral bandits 
side observations  on graphs

influence maximisation revealing bandits

Revealing Graph bandits: Influence Maximization
Ignoring the structure again? The best we can do is eO �p

r⇤TN
�

We aim to do better: RT = eO �p
r⇤TD⇤

�
D⇤ - detectable dimension dependent on T and the structureI good case: star-shaped graph can have D⇤ = 1I bad case: a graph with many small cliques.I the worst case: all nodes are disconnected except 2Idea of the algorithm:
I exploration phase: sample randomly to find out ⇡ D⇤ nodes
I bandit case: use any bandit algorithm on these nodes
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Exp3-IX regret bound
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Next step
Generalization of the setting to combinatorial actions

M

i

c

h

a

l

V

a

l

k

o

–

G

r

a

p

h

s

i

n

M

a

c

h

i

n

e

L

e

a

r

n

i

n

g

S

e

q

u

e

L

-

2

7

/

6

6

Spectral Bandits Summary
I Spectral bandit setting (smooth graph functions).I SpectralUCB

I Regret bound
RT = eO

⇣

d

p
T ln

T

⌘

I SpectralTS
I Regret bound
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⇣
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p
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I Computationally more e�cient.I SpectralEliminator
I Regret bound

RT = eO
⇣p

d

T ln
T

⌘

I Better upper, empirically does not seem to work well (yet)
I Bounds scale with e�ective dimension
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Next step
Generalization of the setting to combinatorial actions
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Survey: http://researchers.lille.inria.fr/~valko/hp/publications/valko2016bandits.pdf



GRAPH 
BANDITS  

WITH SIDE 
OBSERVATIONS
exploiting free observations from 

neighbouring nodes

Kocák, Neu, MV, Munos: Efficient learning by implicit exploration in bandit problems 
with side observations, NIPS 2014 

Kocák, Neu, MV: Online learning with Erdos-Rényi side-observation graphs  
UAI 2016  

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016 



SIDE OBSERVATIONS: UNDIRECTEDGraph bandits: Side observations

Example 1: undirected observations

Michal Valko – Graphs in Machine Learning SequeL - 8/66

Graph bandits: Side observations

Example 1: Graph Representation

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 9/66
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SIDE OBSERVATIONS: DIRECTEDGraph bandits: Side observations
Example 2: Directed observation

Michal Valko – Graphs in Machine Learning SequeL - 10/66

Graph bandits: Side observations

Example 2

A B

C

DE

F

Michal Valko – Graphs in Machine Learning SequeL - 11/66
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SIDE OBSERVATIONS - AN INTERMEDIATE GAME

Full-information 

observe losses of all actions 

example: Hedge

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T )

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT )

A B

C

DE

F

A B

C

DE

F
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Bandits 

observe losses of the chosen action 

example: EXP3

Graph bandits: Typical settings
Full Information setting

I Pick an action (e.g. action A)
I Observe losses of all actions
I RT = eO(

p
T )

Bandit setting
I Pick an action (e.g. action A)
I Observe loss of a chosen action
I RT = eO(

p
NT )
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From Experts to Bandits 
Mannor and Shamir 2011



KNOWLEDGE OF OBSERVATION GRAPHS

ELP (Mannor and Shamir 2011)  

EXP3 - with “LP balanced exploration”   

undirected  O(√(αT))  ✅  -  needs to know Gt 

directed case  O(√(cT)) - needs to know Gt 

EXP3-SET (Alon, Cesa-Bianchi, Gentile, Mansour, 2013) 

undirected  O(√(αT))  ✅   does not need to know Gt    ✅  

EXP3-DOM (Alon, Cesa-Bianchi, Gentile, Mansour, 2013) 

directed  O(√(αT))  ✅       -  need to know Gt  

calculates dominating set

69

Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT )

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T )

A B

C

DE

F
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Graph bandits: Side observation - Directed case
Side observation (Directed case)

I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = eO(

p
↵T )

Exp3-IX - Kocák et. al
I No need to know graph
I RT = eO(

p
↵T )

A B

C

DE

F
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Reminder: Exp3 algorithms in general

I Compute weights using loss estimates ˆ̀t,i .

wt,i = exp
(
−η

t−1∑
s=1

ˆ̀s,i

)

I Play action It such that

P(It = i) = pt,i =
wt,i
Wt

=
wt,i∑N
j=1 wt,j

I Update loss estimates (using observability graph)

How the algorithms approach to bias variance tradeoff?

Michal Valko – Graphs in Machine Learning Lecture 8 - 14/59



Bias variance tradeoff approaches
I Approach of Mixing

I Bias sampling distribution pt over actions
I p′

t = (1 − γ)pt + γst – mixed distribution
I st – probability distribution which supports exploration

I Loss estimates ˆ̀t,i are unbiased

I Approach of Implicit eXploration (IX)
I Bias loss estimates ˆ̀t,i

I Biased loss estimates =⇒ biased weights
I Biased weights =⇒ biased probability distribution

I No need for mixing

Is there a difference in a traditional non-graph case? Not much

Big difference in graph feedback case!

Michal Valko – Graphs in Machine Learning Lecture 8 - 15/59



2.2 Performance guarantees for EXP3-IX
Algorithm 1 EXP3-IX

1: Input: Set of actions S = [d],
2: parameters �

t

2 (0, 1), ⌘
t

> 0 for t 2 [T ].
3: for t = 1 to T do

4: w
t,i

 (1/d) exp (�⌘
t

bL
t�1,i

) for i 2 [d]
5: An adversary privately chooses losses `

t,i

for i 2 [d] and generates a graph G
t

6: W
t

 P
d

i=1

w
t,i

7: p
t,i

 w
t,i

/W
t

8: Choose I
t

⇠ p
t

= (p
t,1

, . . . , p
t,d

)

9: Observe graph G
t

10: Observe pairs {i, `
t,i

} for (I
t

! i) 2 G
t

11: o
t,i

 P
(j!i)2Gt

p
t,j

for i 2 [d]

12: ˆ`
t,i

 `t,i

ot,i+�t
1{(It!i)2Gt} for i 2 [d]

13: end for

Our analysis follows the footsteps of Auer et al.
[3] and Györfi and Ottucsák [9], who provide
an improved analysis of the adaptive learning-
rate rule proposed by Auer et al. [4]. However,
a technical subtlety will force us to proceed a
little differently than these standard proofs: for
achieving the tightest possible bounds and the
most efficient algorithm, we need to tune our
learning rates according to some random quan-
tities that depend on the performance of EXP3-
IX. In fact, the key quantities in our analysis are
the terms

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

,

which depend on the interaction history F
t�1

for all t. Our theorem below gives the performance
guarantee for EXP3-IX using a parameter setting adaptive to the values of Q

t

. A full proof of the
theorem is given in the supplementary material.

Theorem 1. Setting ⌘
t

= �
t

=

q
(log d)/(d+

P
t�1

s=1

Q
s

) , the regret of EXP3-IX satisfies

R
T

 4E
"r⇣

d+
P

T

t=1

Q
t

⌘
log d

#
. (3)

Proof sketch. Following the proof of Lemma 1 in Györfi and Ottucsák [9], we can prove that
dX

i=1

p
t,i

ˆ`
t,i

 ⌘
t

2

dX

i=1

p
t,i

⇣
ˆ`
t,i

⌘
2

+

✓
logW

t

⌘
t

� logW
t+1

⌘
t+1

◆
. (4)

Taking conditional expectations, using Equation (2) and summing up both sides, we get
TX

t=1

dX

i=1

p
t,i

`
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
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t
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Q
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logW
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� logW
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⌘
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◆����Ft�1

�
.

Using Lemma 3.5 of Auer et al. [4] and plugging in ⌘
t

and �
t

, this becomes
TX

t=1

dX

i=1

p
t,i

`
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 3

r⇣
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P
T

t=1

Q
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log d+

TX
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logW
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⌘
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� logW
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�
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Taking expectations on both sides, the second term on the right hand side telescopes into

E

logW

1

⌘
1

� logW
T+1

⌘
T+1

�
 E
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� logw

T+1,j

⌘
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�
= E


log d

⌘
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+ E

h
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T,j

i

for any j 2 [d], giving the desired result as
TX
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log d

#
,

where we used the definition of ⌘
T

and the optimistic property of the loss estimates.

Setting m = 1 and c = �
t

in Lemma 1, gives the following deterministic upper bound on each Q
t

.
Lemma 2. For all t 2 [T ],

Q
t

=

dX

i=1

p
t,i

o
t,i

+ �
t

 2↵
t

log

✓
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dd2/�
t

e+ d

↵
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◆
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5

Graph bandits: Comparison of loss estimates
Typical algorithms - loss estimates

ˆ̀t,i =

(
`t,i/ot,i if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i
ot,i

ot,i + 0(1 � ot,i) = `t,i

Exp3-IX - loss estimates

ˆ̀t,i =

(
`t,i/(ot,i + �) if `t,i is observed

0 otherwise.

E[ˆ̀t,i ] =
`t,i

ot,i + �
ot,i + 0(1 � ot,i) = `t,i � `t,i

�

ot,i + �
 `t,i

No mixing!
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Optimistic bias for the loss estimates

Benefits of the implicit exploration 

no need to know the graph before 

no need to estimate dominating set 

no need for doubling trick  

no need for aggregation

Exp3-IX regret bound

RT  log N
⌘

+
⇣⌘

2 + �
⌘ TX

t=1

E

2↵t log

✓
1 +

dN2/�e+ N
↵t

◆
+ 2

�

RT = eO
⇣p

↵T ln N
⌘

Next step
Generalization of the setting to combinatorial actions
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FOLLOW UPS

EXP3-IX (Kocák, Neu, MV, Munos, 2014) 

directed  O(√(αT))  ✅   does not need to know Gt    ✅  

EXP3.G (Alon, Cesa-Bianchi, Dekel, Koren, 2015) 

directed  O(√(αT))  ✅   does not need to know Gt    ✅ 

mixes uniform distribution 

more general algorithm for settings beyond bandits 

high-probability bound 

 Neu 2015: high-probability bound for EXP3-IX
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Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT )

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T )

A B

C

DE

F
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Graph bandits: Side observation - Directed case
Side observation (Directed case)

I Pick an action (e.g. action A)
I Observe losses of neighbors

Alon, Cesa-Bianchi, Gentile, Mansour
I Exp3-DOM
I Need to know graph
I Need to find dominating set
I RT = eO(

p
↵T )

Exp3-IX - Kocák et. al
I No need to know graph
I RT = eO(

p
↵T )

A B

C

DE

F
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Graph bandits: Side observation - Undirected case

Side observation (Undirected case)
I Pick an action (e.g. action A)
I Observe losses of neighbors

Mannor and Shamir (ELP algorithm)
I Need to know the graph
I Clique decomposition (c cliques)

I RT = eO(
p

cT )

Alon, Cesa-Bianchi, Gentile, Mansour
I No need to know the graph
I Independence set of ↵ actions
I RT = eO(

p
↵T )

A B

C

DE

F
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COMPLEX GRAPH ACTIONSGraph bandits: Complex actions

A B C

DEF

G H I

JKL

I Play action Vt 2 S ⇢ {0, 1}N , kvk
1

 m from all v 2 S
I Obtain losses VT

t `t

I Observe additional losses according to the graph
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Graph bandits: Complex actions

FPL-IX - regret bound

RT = eO
0

@m3/2

vuut
TX

t=1

↵t

1

A = eO
⇣

m3/2

p
↵T

⌘
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Example: online shortest path semi-bandits with observing traffic on the side streets



GRAPH 
BANDITS WITH 

NOISY SIDE  
OBSERVATIONS
exploiting side observations that can 

be perturbed by certain level of noise 

Kocák, Neu, MV: Online learning with noisy side observations, AISTATS 2016 



NOISY SIDE OBSERVATIONS

Want: only reliable information!

1) If we know the perfect cutoff ε 

reliable: use as exact 

unreliable: rubbish 

then we can improve over pure bandit setting! 

2) Treating noisy observation induces bias 

What can we hope for?

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
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⇣p
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Can we learn without knowing either ε or α* ? 

� "

� "

� "

� "

< "

� "
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Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
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⇣p
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effective independence number

30 Chapter 2. Side observations

Here we used the fact that Ot,i is independent of Kt,i and has expectation ot,i given Ft�1. We
call this algorithm Follow-the-Perturbed-Leader with Implicit eXploration (FPL-IX, Kocák et al.
2014a). Note that the geometric resampling procedure can be terminated as soon as Kt,i becomes
well-defined for all i with Ot,i = 1. As noted by Neu and Bartók (2013), this requires generating
at most N copies of OOOt on expectation. As each of these copies requires one access to the linear
optimization oracle over S , we conclude that the expected running time of FPL-IX is at most N
times that of the expected running time of the oracle. A high-probability guarantee of the running
time can be obtained by observing that Ut,i  log

� 1
d

�

/gt holds with probability at least 1�d and
thus we can stop sampling after at most d log

�N
d

�

/gt steps with probability at least 1� d . The
regret guarantee for FPL-IX using the approximation e

at of at is stated below.

Theorem 2.2.2 — Regret of FPL-IX by Kocák et al. (2014a). Assume that for all t 2 [T ],

at/C  e

at  at  N for some C > 1. Setting ht = gt =
q

(logN +1)/
�

m
�

N +Ât�1
s=1 eas

��

and
assuming mN > 4, the regret of FPL-IX satisfies

RT  Hm3/2
q

�

N +C ÂT
t=1 at

�

(logN +1), where H = O(log(mNT )).

2.3 Noisy side observations

Until now in this chapter, we studied situations when the learner observes losses associated with
some additional actions besides its own loss. This setting fails to address one important practical
concern: in reality, one can rarely expect perfect side-observations to be available. In the current
section, we propose a similar model that can incorporate imperfect side-observations corrupted by
various levels of noise, depending on the problem structure.

As an illustration of noisy setting, consider the problem of controlling solar panels so as to
maximize their power production. In this problem, the learner has to repeatedly decide about the
orientation of the panels so as to find alignments with strong sunshine. Besides the amount of
the energy being actually produced in the current alignment, the learner can also possibly base
its decisions on measurements of sensors installed on the solar panel. However, the observations
generated by these sensors can be of variable quality depending on visibility conditions, the quality
of the sensors and the alignment of the panels. Overall, this problem can be seen as a bandit problem
with noisy side-observations fitting into our framework, where actions correspond to alignments
and the noisy side observations give information about similar alignments.

Formally, the learning protocol (Figure 2.5) additionally assumes the knowledge of the weight
of each arc i ! j in Gt , which is denoted as st,(i, j) and assumed to lie in [0,1]. The feedback that
the learner in the noisy setting is

ct,i = st,(It ,i) · `t,i +
�

1� st,(It ,i)
�

·xt,i

for every arm i, where xt,i is the observation noise. We assume that each xt,i is zero-mean, satisfies
|xt,i| R for some known constant R � 0, and is generated independently of all other noise terms
and the history of the process2.

2We are mainly interested in the setting where R = Q(1), that is, we are neither in the easy case where R is close to
zero or the hard one where it may be as large as W(

p
T ).

known weight

zero-mean noise



NOISY SIDE OBSERVATIONS

� "

� "

� "

< "

� "

� "

G: weighted graph 

G(ε): graph with only ≥ε edges   

α(ε): independence number of G(ε) 

effective independence number of G: 
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" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t )
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N ].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N ].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:
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Theorem 1. For all t, let ↵

⇤
t be the e↵ective inde-

pendence number of Gt. Then, there exists a setting
of (⌘t) and (�t) for which the regret of Exp3-IXt is
bounded as

RT = eO
0

@(1 +R)

vuut
TX

t=1

↵(Gt("t))

"

2
t

1

A
.

The theorem is proved in the Appendix. Note that
if we choose "t = argmin"2[0,1]

↵(Gt("))
"2 for all t, the

above bound essentially becomes eO(
p
↵

⇤
avgT ) where

↵

⇤
avg = 1

T

PT
t=1 ↵

⇤
t is the average e↵ective indepen-

dence number of the sequence of graphs played by the
environment. Note however that tuning "t can be a
very challenging task in practice, since computing in-
dependence numbers in general is known to be NP-
hard. Even worse, computing the e↵ective indepen-
dence number of a weighted graph can require com-
puting up to N

2 independence numbers. In the next
section, we propose an adaptive algorithm that does
not need to tune this parameter and still manages to
guarantee the same regret bound.

3.2 An adaptive algorithm:

This section presents our main algorithm that obtains
strong regret bounds without having to estimate any
e↵ective independence numbers. The key element of
this algorithm is using loss estimates of the form

b̀
t,i =

st,(It,i) · ct,iPN
j=1 pt,js

2
t,(j,i) + �t

, (3)

where �t � 0 is again the so-called implicit exploration
parameter already introduced in the previous section.
Notice that the di↵erence from the estimates (1) is that
the observation ct,i is multiplied by the weight of useful
information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when
setting �t = 0 since

E
⇥
st,(It,i) · ct,i

��Ft�1

⇤
=

0

@
NX

j=1

pt,js
2
t,(j,i)

1

A · `t,i.

The role of this scaling is pulling the noise term ⇠t,i

toward zero for actions i with small weights sIt,i, and
thus achieving a similar variance-reducing e↵ect as the
truncations employed by Exp3-IXt.

Armed with the loss estimates (3), we are ready to de-
fine our algorithm: Exp3 (presented as Algorithm 1)
with Weighted observations and Implicit eXploration,
or, in short, Exp3-WIX. Overall, Exp3-WIX has
two set of parameters to tune: the sequence of learn-
ing rates (⌘t)t and the sequence of IX parameters

(�t)t. Our main theorem below states the performance
guarantees of Exp3-WIX with an adaptive learning-
rate sequence that does not need any prior knowledge
about the number of rounds or the nature of the side-
observation graphs. The key quantity for computing
the parameters ⌘t and �t is

Qt =
NX

i=1

pt,iPN
j=1 pt,js

2
t,(j,i) + �t

,

defined for all t.

Theorem 2. For all t, let ↵⇤
t be the e↵ective indepen-

dence number of Gt. Then, setting

⌘t =

s
logN

2(1 +R+R

2)(N +
Pt�1

s=1 Qs)

and �t = R⌘t, the regret of Exp3-WIX is bounded as

RT = eO
0

@(1 +R)

vuut
N +

TX

t=1

↵

⇤
t

1

A
.

The theorem is proved in Section 5. In plain words,
Theorem 2 guarantees that the regret of Exp3-WIX

grows as eO(
p

↵

⇤
avgT ). Notice that in order to obtain

this regret bound, Exp3-WIX never needs to com-
pute the e↵ective independence number of any of the
observation graphs. This saves us from a significant
computational overhead as compared to the näıve al-
gorithm Exp3-IXt that needed to set a truncation
parameter to discard unreliable observations.

4 The e↵ective independence number

The previous section has established that the perfor-
mance guarantees of our algorithms can be expressed
in terms of the e↵ective independence number of the
observation graphs. In this section, we provide some
basic insights about the nature of this quantity and
describe some graph structures with small e↵ective in-
dependence numbers.

The first observation we make is that the e↵ective in-
dependence number is always well-defined, as the func-
tion ↵(")/"2 can be easily shown to be piecewise de-
creasing and lower semicontinuous with at most N

discontinuities. Thanks to these properties, this ex-
pression takes its minimum within the closed interval
[0, 1]. Second, we note that the e↵ective independence
number of any weighted graph is trivially bounded by
the number N of the nodes in the graph. This follows
from the fact that ↵

⇤  ↵(1)/1  N . This essen-
tially guarantees that incorporating side-observations
can never be harmful to the performance of the learner:

Graph bandits: Noisy Side Observations
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Since 

incorporating noisy observations does not hurt

But how much does it help?
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Graph bandits: Noisy Side Observations
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Threshold estimate
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" 2 [0, 1], let G(") be the (unweighted) directed graph
where arc i ! j is present if and only if si,j � " in G.
Letting ↵(") be the independence number of G("), the
e↵ective independence number of G is defined as

↵

⇤ = min
"2[0,1]

↵(")

"

2
.

Roughly speaking, the e↵ective independence number
is a measure of connectivity of weighted graphs. A de-
tailed discussion of the e↵ective independence number
is deferred to Section 4. In what follows, we describe
two learning algorithms that guarantee a regret bound
depending on the e↵ective independence numbers (↵⇤

t )
of the observation graphs (Gt) as eO �pP

t ↵
⇤
t

�
.

For presenting our ideas (and our eventual algorithm),
we take as template the seminal Exp3 algorithm of
Auer et al. (2002a), as presented by Bubeck and Cesa-
Bianchi (2012) (see Algorithm 1). The main idea

of this algorithm is maintaining an estimate b̀
t,i of

the losses `t,i for every t and i and choosing arm i

with probability proportional to exp
��⌘t

Pt�1
s=1

b̀
s,i

�
in

round t, where ⌘t > 0 is a parameter of the algorithm
often called the learning rate. The main challenge in
constructing a learning algorithm for our setting is de-
signing appropriate estimates for the losses. In par-
ticular, it is obvious that the learner should not rely
on observations with high amount of noise in the same
way as it relies on observations with almost no noise.
One natural way to address this issue is explicitly dis-
tinguishing between “reliable” and “unreliable” side
observations, and using only reliable sources for es-
timating losses. We first show that while this intu-
itive loss-estimation method does lead to strong per-
formance guarantees, it requires a very careful choice
of the cuto↵ parameter distinguishing reliable and un-
reliable sources. In Section 3.2, we propose our main
algorithm that overcomes this issue and guarantees
equally strong performance guarantees without hav-
ing to explicitly distinguish between reliable and un-
reliable sources.

3.1 A näıve algorithm:

We first consider an algorithm that bases its decisions
on the following estimates of each `t,i:

b̀(b)
t,i =

ct,iPN
j=1 pt,jst,(j,i) + �t

. (1)

where b stands for “basic”. Here, �t � 0 is a so-called
implicit exploration (or, in short, IX) parameter first
used by Kocák et al. (2014) for decreasing the variance
of importance-weighted estimates. Notice that setting

Algorithm 1 Algorithm template: Exp3 (Auer et al.,
2002a)

1: Initialization:

b
L0,i = 0 for all i 2 [N ].

2: for t = 1 to T do

3: Set ⌘t and �t.
4: Construct the probability distribution pt with.

pt,i =
exp

�� ⌘t
b
Lt�1,i

�
PN

j=1 exp
�� ⌘t

b
Lt�1,j

� .

5: Play random arm It according to pt.
6: Incur loss `t,It .
7: Observe ct,i = st,(It,i)`t,i + (1 � st,(It,i))⇠t,i for

all i 2 [N ].
8: Observe graph Gt.
9: Construct loss estimates b̀

t,i.

10: Set b
Lt,i = b

Lt�1,i + b̀
t,i.

11: end for

�t = 0, makes estimates above unbiased since

E [ct,i| Ft�1] =

0

@
NX

j=1

pt,jst,(j,i)

1

A · `t,i,

where we used our assumption that E [⇠t,i] = 0. Us-
ing these estimates in our algorithmic template Exp3

(see Algorithm 1), one would expect to get reasonable
performance guarantees. Unfortunately however, we
were not able to prove a performance guarantee for
the resulting algorithm.

A close examination reveals that the reason for the
poor performance of the above algorithm is the large
variance of the estimates (1) which is caused by includ-
ing observations from “unreliable sources” with small
weights. One intuitive idea is to explicitly draw the
line between reliable and unreliable sources by cutting
connections with weights under a certain threshold.
This e↵ect is realized by the estimates

b̀(t)
t,i =

ct,iI{st,(It,i)�"t}
PN

j=1 pt,jst,(j,i)I{st,(j,i)�"t} + �t

, (2)

where "t 2 [0, 1] is a threshold value and t stands
for “thresholded”. We call the algorithm resulting
from using the above estimates in Algorithm 1 Exp3-

IXt, standing for “Exp3 with Implicit eXploration
and Truncated side-observation weights”. Thanks to
the thresholding operation, the variance of the loss es-
timates can be nicely controlled and it becomes possi-
ble to prove a strong performance guarantee for Exp3-
IXt. In particular, we prove the following result about
the regret of Exp3-IXt:
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Theorem 1. For all t, let ↵

⇤
t be the e↵ective inde-

pendence number of Gt. Then, there exists a setting
of (⌘t) and (�t) for which the regret of Exp3-IXt is
bounded as

RT = eO
0

@(1 +R)

vuut
TX

t=1

↵(Gt("t))

"

2
t

1

A
.

The theorem is proved in the Appendix. Note that
if we choose "t = argmin"2[0,1]

↵(Gt("))
"2 for all t, the

above bound essentially becomes eO(
p
↵

⇤
avgT ) where

↵

⇤
avg = 1

T

PT
t=1 ↵

⇤
t is the average e↵ective indepen-

dence number of the sequence of graphs played by the
environment. Note however that tuning "t can be a
very challenging task in practice, since computing in-
dependence numbers in general is known to be NP-
hard. Even worse, computing the e↵ective indepen-
dence number of a weighted graph can require com-
puting up to N

2 independence numbers. In the next
section, we propose an adaptive algorithm that does
not need to tune this parameter and still manages to
guarantee the same regret bound.

3.2 An adaptive algorithm:

This section presents our main algorithm that obtains
strong regret bounds without having to estimate any
e↵ective independence numbers. The key element of
this algorithm is using loss estimates of the form

b̀
t,i =

st,(It,i) · ct,iPN
j=1 pt,js

2
t,(j,i) + �t

, (3)

where �t � 0 is again the so-called implicit exploration
parameter already introduced in the previous section.
Notice that the di↵erence from the estimates (1) is that
the observation ct,i is multiplied by the weight of useful
information in ct,i and the denominator is modified
accordingly, so that the estimates are unbiased when
setting �t = 0 since

E
⇥
st,(It,i) · ct,i

��Ft�1

⇤
=

0

@
NX

j=1

pt,js
2
t,(j,i)

1

A · `t,i.

The role of this scaling is pulling the noise term ⇠t,i

toward zero for actions i with small weights sIt,i, and
thus achieving a similar variance-reducing e↵ect as the
truncations employed by Exp3-IXt.

Armed with the loss estimates (3), we are ready to de-
fine our algorithm: Exp3 (presented as Algorithm 1)
with Weighted observations and Implicit eXploration,
or, in short, Exp3-WIX. Overall, Exp3-WIX has
two set of parameters to tune: the sequence of learn-
ing rates (⌘t)t and the sequence of IX parameters

(�t)t. Our main theorem below states the performance
guarantees of Exp3-WIX with an adaptive learning-
rate sequence that does not need any prior knowledge
about the number of rounds or the nature of the side-
observation graphs. The key quantity for computing
the parameters ⌘t and �t is

Qt =
NX

i=1

pt,iPN
j=1 pt,js

2
t,(j,i) + �t

,

defined for all t.

Theorem 2. For all t, let ↵⇤
t be the e↵ective indepen-

dence number of Gt. Then, setting

⌘t =

s
logN

2(1 +R+R

2)(N +
Pt�1

s=1 Qs)

and �t = R⌘t, the regret of Exp3-WIX is bounded as

RT = eO
0

@(1 +R)

vuut
N +

TX

t=1

↵

⇤
t

1

A
.

The theorem is proved in Section 5. In plain words,
Theorem 2 guarantees that the regret of Exp3-WIX

grows as eO(
p

↵

⇤
avgT ). Notice that in order to obtain

this regret bound, Exp3-WIX never needs to com-
pute the e↵ective independence number of any of the
observation graphs. This saves us from a significant
computational overhead as compared to the näıve al-
gorithm Exp3-IXt that needed to set a truncation
parameter to discard unreliable observations.

4 The e↵ective independence number

The previous section has established that the perfor-
mance guarantees of our algorithms can be expressed
in terms of the e↵ective independence number of the
observation graphs. In this section, we provide some
basic insights about the nature of this quantity and
describe some graph structures with small e↵ective in-
dependence numbers.

The first observation we make is that the e↵ective in-
dependence number is always well-defined, as the func-
tion ↵(")/"2 can be easily shown to be piecewise de-
creasing and lower semicontinuous with at most N

discontinuities. Thanks to these properties, this ex-
pression takes its minimum within the closed interval
[0, 1]. Second, we note that the e↵ective independence
number of any weighted graph is trivially bounded by
the number N of the nodes in the graph. This follows
from the fact that ↵

⇤  ↵(1)/1  N . This essen-
tially guarantees that incorporating side-observations
can never be harmful to the performance of the learner:

WIX estimate

Graph bandits: Noisy Side Observations

eO
⇣p

1T
⌘
 eO

⇣p
↵T

⌘
 eO

⇣p
↵?T

⌘
 eO

⇣p
NT

⌘

RT = eO
⇣p

↵?T
⌘
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Figure 2: Dependence of ↵⇤ on the size of the graph with random weights, 100 graphs for each size.

the regret of Exp3-WIX is always within logarithmic
factors of the minimax regret of order

p
NT for the

standard multi-armed bandit problem without side ob-
servations.

It is also easy to see that the e↵ective independence
number exactly matches the independence number if
all edge weights are binary. This in particular implies
that for such graphs, the regret of Exp3-WIX grows
at the minimax rate established by Alon et al. (2013)
up to logarithmic factors, matching the performance
guarantees of the algorithms of Alon et al. (2013) and
Kocák et al. (2014). Another interesting case is when
all weights are either zero or equal to a fixed constant
", also assuming si,i = ". In this case, the e↵ective in-
dependence number becomes ↵

"2 , where ↵ is the inde-
pendence number of the underlying unweighted graph.
This case was studied in the recent paper of Wu et al.
(2015), who show (in their Corollary 4) that the mini-
max regret in this case is of ⇥(

p
↵T/")—implying that

our performance bounds for this case are again near-
optimal4. Also observe that whenever all weights are
bounded by some constant c > 0 from below, the ef-
fective independence number becomes upper-bounded
by 1/c2, irrespective of the number of actions. That
is, our algorithm can achieve an exponential perfor-
mance gain over bandit algorithms in terms of N by
leveraging such feedback structures.

Let us now describe a class of weighted graphs with
bounded e↵ective independence numbers. Consider
a geometric graph whose nodes represent vertices of
a uniform k ⇥ k grid on [0, 1]2. The weight of edge
(i, j) is given as 1/(1 + d

2
i,j), where di,j is the Eu-

clidean distance of the respective vertices represented
by i and j. This graph can be used to model a sen-
sor network where the measurement accuracy of mea-
surements degrades with the distance. Thus, reading

4
While we prove our bounds for the case where si,i = 1

for all i, it is easy to extend our results to the case where

all such weights equal a constant in [0, 1].

the measurements from one sensor will give informa-
tion about the measurements of nearby sensors as well.
Intuitively, increasing the number of sensors (i.e., re-
fining the grid) should only improve the information-
sharing between sensors up to a certain level. It is
natural to expect a reasonable graph property quanti-
fying the information-sharing e�ciency to capture this
intuition. We have numerically evaluated the e↵ec-
tive independence number of a number of graphs from
the above family to test if it satisfies the above crite-
rion. We have found that the e↵ective independence
numbers remain bounded by a constant (roughly 30)
even when refining the grid infinitely, confirming that
the e↵ective independence number captures the above
phenomenon.

Finally, we conducted some numerical simulations to
evaluate the average e↵ective independence numbers
of certain types of weighted random graphs. In partic-
ular, we considered random graphs with i.i.d. weights
distributed uniformly on [0, 1], [ 12 , 1] and [0, 1

2 ]. The
distributions of the e↵ective independence numbers are
illustrated as scatter plots for di↵erent graph sizes on
Figure 2. First, observe that the average ↵⇤ of U(0, 1)-
weighted graphs shows a logarithmic trend in terms of
N . The results concerning U( 12 , 1)-weighted graphs
are not surprising given that we have already estab-
lished that graphs with bounded weights have finite
e↵ective independence numbers. For U(0, 1

2 )-weighted
graphs, we see that ↵

⇤ grows linearly up until a cer-
tain threshold, when it starts to follow a logarithmic
trend. The intuition behind this linear behavior for
small graphs is the following. First, observe that the
optimal value of " is greater than 1/

p
N . That is, un-

til N is large enough so that a critical mass of edges
are above this quantity, the optimal value of ↵(")/"2

remains N . Once N is beyond this critical value, ↵⇤

starts following a logarithmic trend.

special case: if sij is either 0 or ε than α*= α/ε2 

For this special case, there is a matches    
Θ(√(αT)/ε) by Wu, György, Szepesvári, 2015.
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Figure 3: Comparison of total regrets of the algorithms at time T for static and adaptive learning rates.

6 Experiments

In this section, we empirically compare Exp3-WIX

to some of its natural competitors: Exp3-IXt, vanilla
Exp3 that ignores all side observations and a straight-
forward variation of the Exp3-IX algorithm of Kocák
et al. (2014). This latter algorithm, referred to as
Exp3-IXb (with “b” standing for “basic”), uses a
threshold " to decide which observations are too noisy
to use and which are the ones to be retained: All
the edges with weights smaller than a parameter " are
deleted and the rest of the weights are set to 1. The
algorithm then plays basic Exp3-IX for the resulting
binary graph. That is, the di↵erence between Exp3-

IXt and Exp3-IXb is that the latter does not adjust
for the bias arising from using unreliable side observa-
tions. Note that Exp3-IXb comes without any formal
performance guarantee.

For the purpose of the experiments, we assumed to
have 25 actions forming 5⇥5 grid embedded in a plane.
The distance of neighbors in the grid was set to be 1.
Using this structure, we defined the weight connect-
ing two nodes as min

�
3/d2, 1

 
, and d is the Euclidean

distance between actions in the grid. This choice is
motivated by the fact that the intensity of many phys-
ical phenomena decays proportionally to the inverse
square of the distance (e.g., gravitational force, elec-
tromagnetic phenomena).

A simple idea for constructing synthetic loss sequences
is letting the instantaneous loss of each action evolve as
a random walk with small Gaussian increments (with
appropriate truncations when the loss goes beyond the
[0, 1] interval). In our experiments, we took this idea
one step further: We constructed 20 independent ran-
dom walks for each action and alternated them, that
is, we used one random walk each to define every twen-
tieth loss. Using this procedure, we generated a sin-
gle loss sequence of T = 5, 000 steps to test the algo-
rithms. For a fair comparison, we ran each algorithm
for their respective theoretically motivated adaptive
learning rates, and also for a number of static learning
rates between 0.001 and 1. For static learning rates,

we observed the best performance of Exp3 for learn-
ing rates around 0.01, all the other algorithms did well
for learning rates around 0.1. Due to the lack of space,
we included plots only for these two learning rates.

We ran Exp3-IXb and Exp3-IXt for several values of
" from 0 to 1. In all experiments, we set the implicit
exploration parameters to zero. This is well-justified
in the case of undirected graphs, as shown by the anal-
ysis of Alon et al. (2013). Figure 3 shows the perfor-
mance of the algorithms for ⌘ = 0.01, ⌘ = 0.1 and the
adaptive learning rates for each algorithm as a func-
tion of the threshold parameter ". Each curve on this
graph is the average of the total regrets measured in
10 independent runs with error bars proportional to
the empirical standard deviation.

Our experiments confirm that guessing the right value
for the threshold parameter is indeed a very di�cult
problem: while Exp3-WIX performs consistently well
for all parameter settings, Exp3-IXt and Exp3-IXb

only perform reasonably well for moderate values of "
that are not supported by theory. In fact, the value
of " optimizing ↵(")/"2 is 1, which is shown to per-
form poorly in the experiments. Perhaps surprisingly,
Exp3-IXb performs well despite the obvious bias in
its loss estimates. The performance of Exp3 is signifi-
cantly worse than Exp3-WIX, confirming the benefit
of side-observations, however noisy they are.

7 Conclusions and open problems

The main contribution of our work is introducing a
new partial-observability model for adversarial online
learning and proposing an e�cient learning algorithm
with rigorous performance guarantees for this setting.
Our regret bounds depend on a newly introduced
graph property that we call the e↵ective independence
number. While the recent results of Wu et al. (2015)
suggest that our bounds are minimax optimal in some
special cases of our framework, it is not yet known
whether the e↵ective independence number is the ex-
act quantity that characterizes the minimax regret in
general—we leave this exciting question open for fu-
ture investigation.

BETTER



NEW DIRECTIONS

Learning on the graph while learning the graph? 

most of algorithms require  (some) knowledge of the graph 

not always available to the learner 

Question: Can we learn faster without knowing the graphs? 

example: social network provider has little incentive to reveal the 
graphs to advertisers 

Answer: Cohen,  Hazan, and Koren:  Online learning with feedback graphs 
without the graphs (ICML June 19-24, 2016) 

NO!   (in general we cannot, but possible in the stochastic case) 

Coming up next: 

Erdös-Rényi side observation graphs  (UAI June 25-26, 2016)
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: UNKNOWN GRAPHS!



GRAPH 
BANDITS WITH  
ERDÖS-RÉNYI 

OBSERVATIONS
side observations from graph 

generators

Kocák, Neu, MV: Online learning with Erdos-Rényi side-observation graphs  
UAI 2016 



PROTOCOL FOR ERDÖS-RÉNYI GRAPHS

79

Every round t the learner 

picks a node It 

suffers loss for It 

receives feedback  

for It 
for every other node with probability rt

2 PROBLEM DEFINITION

We now formalize our learning problem. We consider a
sequential interaction scheme between a learner and an en-
vironment, where the following steps are repeated in every
round t = 1, 2, . . . , T :

1. The environment chooses r
t

2 [0, 1] and a loss func-
tion over the arms, with `

t,i

being the loss associated
with arm i 2 [N ]

def= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some
randomness), the learner draws an arm I

t

2 [N ].

3. The learner suffers loss `
t,It .

4. For all i 6= I
t

, O
t,i

is independently drawn from
a Bernoulli distribution with mean r

t

. Furthermore,
O

t,It is set as 1.

5. For all i 2 [N ] such that O
t,i

= 1, the learner observes
the loss `

t,i

.

The goal of the learner is to minimize its total expected
losses, or, equivalently, to minimize the total expected re-

gret (or, in short, regret) defined as

R
T

= max

i2[N ]

E
"

TX

t=1

(`
t,It � `

t,i

)

#
.

We will denote the interaction history between the learner
and the environment up to the beginning of round t
by F

t�1

. We also define p
t,i

= P [I
t

= i| F
t�1

].

The main challenge in our setting is leveraging side obser-
vations without knowing r

t

. Had we had access to the exact
value of r

t

, we would be able to define the following esti-
mate of `

t,i

:

b̀?
t,i

=

O
t,i

`
t,i

p
t,i

+ (1� p
t,i

)r
t

(1)

It is easy to see that the loss estimates defined this way
are unbiased in the sense that E

h
b̀
t,i

���F
t�1

i
= `

t,i

for
all t and i. It is also straightforward to show that an ap-
propriately tuned instance of the Exp3 algorithm of Auer
et al. (2002a) fed with these loss estimates is guaranteed to
achieve a regret of O(

pP
t

(1/r
t

) logN) (see also Seldin
et al. 2014).

Then, one might consider a simple algorithm that devotes
a number of observations to obtain an estimate br

t

of r
t

and
plug this estimate into (1). However, notice that since r

t

is
allowed to change arbitrarily over time, we can only work
with a severely limited sample budget for estimating r

t

:
only N �1 independent observations! Thus, we can obtain
only very loose confidence intervals around r

t

which trans-
late to even more useless confidence intervals around b̀?

t,i

.

Below, we describe a simple trick for obtaining loss esti-
mates that have similar properties to the ones defined in (1)
without requiring exact knowledge or even explicit estima-
tion of r

t

. Our procedure is based on the geometric resam-
pling method of Neu and Bartók (2013). To get an intuition
of the method, let us assume that we have access to the in-
dependent geometrically distributed random variable G?

t,i

with parameter o
t,i

= p
t,i

+ (1 � p
t,i

)r
t

. Then, replac-
ing 1/o

t,i

by G?

t,i

in the definition of b̀?
t

and ensuring that
G?

t,i

is independent of O
t,i

, we can obtain an unbiased loss
estimate essentially equivalent to b̀?

t

.

The challenge posed by this approach is that in our set-
ting, we do not have exact sample access to the geometric
random variable G?

t,i

. In the next section, we describe our
algorithm that is based on replacing G?

t,i

in the above defi-
nition by an appropriate surrogate.

3 ALGORITHM

Our algorithm is called Exp3-Res and displayed as Algo-
rithm 1. It is based on the Exp3 algorithm of Auer et al.
(2002a) and crucially relies on the construction of a surro-
gate G

t,i

of G?

t,i

. Throughout this section, we will assume
that r

t

� log T

2N�2

, which implies that the probability of hav-
ing no side observations in round t is of order 1/

p
T .

The algorithm is initialized by setting w
1,i

= 1/N for all
i 2 [N ], and then performing the updates

w
t+1,i

=

1

N
exp

⇣
�⌘

t+1

bL
t,i

⌘
(2)

after each round t, where ⌘
t+1

> 0 is a parameter of the
algorithm called the learning rate in round t and bL

t,i

is cu-
mulative sum of the loss estimates b̀

s,i

up to (and including)
time t. In round t, the learner draws its action I

t

such that
I
t

= i holds with probability p
t,i

/ w
t,i

. To simplify some
of the notation below, we introduce the shorthand notations
P
t

[·] = P [ ·| F
t�1

] and E
t

[·] = E [ ·| F
t�1

].

For any fixed t, i, we now describe an efficiently com-
putable surrogate G

t,i

for the geometrically distributed ran-
dom variable G?

t,i

with parameter o
t,i

that will be used for
constructing our loss estimates. In particular, our strategy
will be to construct several independent copies

�
O0

t,i

(k)
 

of O
t,i

and choosing G
t,i

as the index k of the first copy
with O0

t,i

(k) = 1. It is easy to see that with infinitely many
copies, we could exactly recover G?

t,i

; our actual surrogate
is going to be weaker thanks to the smaller sample size. For
clarity of notation, we will omit most explicit references to
t and i, with the understanding that all calculations need to
be independently executed for all pairs t, i.

Let us now describe our mechanism for constructing the
copies {O0

(k)}. Since we need independence of G
t,i

and
O

t,i

for our estimates, we use only side observations from

probability of side observation
probability of picking i

true loss

is loss of i observed?

How to estimate rt  in every round when 
it is changing?

How to estimate losses without the 
knowledge of rt ? 

Regret of Exp3-SET (Alon et al. 2013): 

came from. Relaxing this assumption, however, has to
come with a price: As the very recent results of Cohen et al.
(2016) show, achieving nontrivial advantages from side
observations may be impossible without perfectly known
side-observation graphs when an adversary is allowed to
pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms
achieving strong improvements over the standard regret
guarantees under the assumption that the losses are gen-
erated in an i.i.d. fashion and the graphs may be gener-
ated adversarially. Complementing these results, we con-
sider the case of adversarial losses and make the assump-
tion that the side-observation graph in round t is gener-
ated from an Erd

˝

os–R

´

enyi model with an unknown and
time-dependent parameter r

t

. The main challenge for the
learner is then the necessity to exploit the side observa-
tions despite not knowing the sequence (r

t

). It is easy to
see that this model can be equivalently understood as each
non-chosen arm revealing its loss with probability r

t

, in-
dependently of all other observations. That said, we still
find it useful to think of the side observations as being
generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particu-
lar, the case of learning with Erdős–Rényi side-observation
graphs was considered before by Alon et al. (2013): Given
full access to the underlying graph structure, their algo-
rithm Exp3-SET can be shown to guarantee a regret bound
of O�pP

t

(1/r
t

)(1� (1� r
t

)

N

) logN
�
. While the as-

sumption of having full access to the graph be dropped rel-
atively easily in this particular case, exact knowledge of r

t

seems to be crucial for constructing reliable loss estimates
and use them to guide the choice of action in each round.

It turns out that the problem of estimating r
t

while striv-
ing to perform efficiently is in fact a major difficulty in our
setting. Indeed, as we allow r

t

to change arbitrarily be-
tween each round, we cannot rely on any past observations
to construct well-concentrated estimates of these parame-
ters. That is, the main challenge is estimating r

t

from only
a handful of samples. The core technical tool underlying
our approach is a direct estimation procedure for the losses
that does not estimate r

t

explicitly.

Armed with this estimation procedure, we propose a learn-
ing algorithm called Exp3-Res that guarantees a regret of
O(

pP
t

(1/r
t

) logN), provided that r
t

� log T/(2N�2)

holds for all rounds t. This assumption essentially corre-
sponds to requiring that, with high probability, at least 1
side observation is produced in every round, or, in other
words, the side-observation graphs encountered are all non-

empty. Notice that for the assumed range of r
t

’s, our regret
bound improves upon the standard regret bound of Exp3,
which is of O(

p
NT logN). It is easy to see that when r

t

becomes smaller than 1/N , side observations become un-
reliable and the bound of Exp3 cannot be improved. That
is, if our assumption cannot be verified a priori, then ignor-

ing all side observations and using the Exp3 algorithm of
Auer et al. (2002a) instead can yield a better performance.
On the other hand, given that our assumption holds, our
bounds cannot be significantly improved as suggested by
the lower-bound of ⌦(

p
T/r) proved for a static r by Alon

et al. 2013.

Many other partial-information settings have been studied
in previous work. One of the simplest of these settings
is the label-efficient prediction game considered by Cesa-
Bianchi et al. (2005), where the learner can observe either
losses of all the actions or none of them, not even the loss
of the chosen action. This observation can be queried by
the learner at most an " < 1 fraction of the total number of
rounds, which means no losses are observed in the remain-
ing rounds. An even more restricted information setting,
label efficient bandit feedback was considered by Allen-
berg et al. (2006), where the learner can only query the loss
of the chosen action, instead of all losses (see also Audibert
and Bubeck, 2010). Algorithms for these two settings have
regret of eO(

p
T/") and eO(

p
NT/"), respectively. While

these bounds may appear very similar to ours, notice that
our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be
much more challenging to exploit. In another related set-
ting, Seldin et al. (2014) consider M side observations that
the learner can proactively choose in each round without
limitations. Seldin et al. deliver an algorithm with regret
of eO(

p
(N/M)T ), also proving that choosing M observa-

tions uniformly at random is minimax optimal; given this
sampling scheme, it is not even necessary to observe the
loss of the chosen action. Their result is comparable to
ours and the result by Alon et al. (2013) for Erdős–Rényi
observation graphs with parameter r = M/N . However,
Seldin et al. also assume that M is known, which obviates
the need for estimating r. We provide a more technical dis-
cussion on the related work in Section 6.

In our paper, we assume that, just like the observation prob-
abilities, the losses are adversarial, that is, they can change
at each time step without restrictions. Learning with side
observations and stochastic losses was studied by Caron
et al. (2012) and Buccapatnam et al. (2014). While this
is an easier setting that the adversarial one, the authors as-
sumed, in both cases, that the graphs have to be known
in advance. Recently, Carpentier and Valko (2016) stud-
ied another stochastic setting where the graph is also not
known in advance, however their setting considers differ-
ent feedback and loss structure (influence maximization)
which differs from the side-observation setting.

Furthermore, Alon et al. (2015) considered a strictly more
difficult setting than ours, where the loss of the chosen ac-
tion may not be a part of the received feedback.
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2 PROBLEM DEFINITION

We now formalize our learning problem. We consider a
sequential interaction scheme between a learner and an en-
vironment, where the following steps are repeated in every
round t = 1, 2, . . . , T :

1. The environment chooses r
t

2 [0, 1] and a loss func-
tion over the arms, with `

t,i

being the loss associated
with arm i 2 [N ]

def= {1, 2, . . . , N} at time t.

2. Based on its previous observations (and possibly some
randomness), the learner draws an arm I

t

2 [N ].

3. The learner suffers loss `
t,It .

4. For all i 6= I
t

, O
t,i

is independently drawn from
a Bernoulli distribution with mean r

t

. Furthermore,
O

t,It is set as 1.

5. For all i 2 [N ] such that O
t,i

= 1, the learner observes
the loss `

t,i

.

The goal of the learner is to minimize its total expected
losses, or, equivalently, to minimize the total expected re-

gret (or, in short, regret) defined as

R
T

= max

i2[N ]

E
"

TX

t=1

(`
t,It � `

t,i

)

#
.

We will denote the interaction history between the learner
and the environment up to the beginning of round t
by F

t�1

. We also define p
t,i

= P [I
t

= i| F
t�1

].

The main challenge in our setting is leveraging side obser-
vations without knowing r

t

. Had we had access to the exact
value of r

t

, we would be able to define the following esti-
mate of `

t,i

:

b̀?
t,i

=

O
t,i

`
t,i

p
t,i

+ (1� p
t,i

)r
t

(1)

It is easy to see that the loss estimates defined this way
are unbiased in the sense that E

h
b̀
t,i

���F
t�1

i
= `

t,i

for
all t and i. It is also straightforward to show that an ap-
propriately tuned instance of the Exp3 algorithm of Auer
et al. (2002a) fed with these loss estimates is guaranteed to
achieve a regret of O(

pP
t

(1/r
t

) logN) (see also Seldin
et al. 2014).

Then, one might consider a simple algorithm that devotes
a number of observations to obtain an estimate br

t

of r
t

and
plug this estimate into (1). However, notice that since r

t

is
allowed to change arbitrarily over time, we can only work
with a severely limited sample budget for estimating r

t

:
only N �1 independent observations! Thus, we can obtain
only very loose confidence intervals around r

t

which trans-
late to even more useless confidence intervals around b̀?

t,i

.

Below, we describe a simple trick for obtaining loss esti-
mates that have similar properties to the ones defined in (1)
without requiring exact knowledge or even explicit estima-
tion of r

t

. Our procedure is based on the geometric resam-
pling method of Neu and Bartók (2013). To get an intuition
of the method, let us assume that we have access to the in-
dependent geometrically distributed random variable G?

t,i

with parameter o
t,i

= p
t,i

+ (1 � p
t,i

)r
t

. Then, replac-
ing 1/o

t,i

by G?

t,i

in the definition of b̀?
t

and ensuring that
G?

t,i

is independent of O
t,i

, we can obtain an unbiased loss
estimate essentially equivalent to b̀?

t

.

The challenge posed by this approach is that in our set-
ting, we do not have exact sample access to the geometric
random variable G?

t,i

. In the next section, we describe our
algorithm that is based on replacing G?

t,i

in the above defi-
nition by an appropriate surrogate.

3 ALGORITHM

Our algorithm is called Exp3-Res and displayed as Algo-
rithm 1. It is based on the Exp3 algorithm of Auer et al.
(2002a) and crucially relies on the construction of a surro-
gate G

t,i

of G?

t,i

. Throughout this section, we will assume
that r

t

� log T

2N�2

, which implies that the probability of hav-
ing no side observations in round t is of order 1/

p
T .

The algorithm is initialized by setting w
1,i

= 1/N for all
i 2 [N ], and then performing the updates

w
t+1,i

=

1

N
exp

⇣
�⌘

t+1

bL
t,i

⌘
(2)

after each round t, where ⌘
t+1

> 0 is a parameter of the
algorithm called the learning rate in round t and bL

t,i

is cu-
mulative sum of the loss estimates b̀

s,i

up to (and including)
time t. In round t, the learner draws its action I

t

such that
I
t

= i holds with probability p
t,i

/ w
t,i

. To simplify some
of the notation below, we introduce the shorthand notations
P
t

[·] = P [ ·| F
t�1

] and E
t

[·] = E [ ·| F
t�1

].

For any fixed t, i, we now describe an efficiently com-
putable surrogate G

t,i

for the geometrically distributed ran-
dom variable G?

t,i

with parameter o
t,i

that will be used for
constructing our loss estimates. In particular, our strategy
will be to construct several independent copies

�
O0

t,i

(k)
 

of O
t,i

and choosing G
t,i

as the index k of the first copy
with O0

t,i

(k) = 1. It is easy to see that with infinitely many
copies, we could exactly recover G?

t,i

; our actual surrogate
is going to be weaker thanks to the smaller sample size. For
clarity of notation, we will omit most explicit references to
t and i, with the understanding that all calculations need to
be independently executed for all pairs t, i.

Let us now describe our mechanism for constructing the
copies {O0

(k)}. Since we need independence of G
t,i

and
O

t,i

for our estimates, we use only side observations from

probability of side observation
probability of picking i

true loss

is loss of i observed?

i

It

actions [N ] \ {I
t

, i}. First, let’s define � as a uniform ran-
dom permutation of [N ] \ {I

t

, i}. For all k 2 [N � 2],
we define R(k) = O

t,�(k)

. Note that due to the construc-
tion, {R(k)}N�2

k=1

are pairwise independent Bernoulli ran-
dom variables with parameter r

t

, independent of O
t,i

. Fur-
thermore, knowing p

t,i

we can define P (1), . . . , P (N�2)
as pairwise independent Bernoulli random variables with
parameter p

t,i

. Using P (k) and R(k) we define the ran-
dom variable O0

(k) as

O0
(k) = P (k) + (1� P (k))R(k)

for all k 2 [N � 2]. Using independence of all previously
defined random variables, it is easy to check that the vari-
ables {O0

(k)}N�2

k=1

are pairwise independent Bernoulli ran-
dom variables with expectation o

t,i

= p
t,i

+ (1 � p
t,i

)r
t

.
Now we are ready to define G

t,i

as

G
t,i

= min {k 2 [N � 2] : O(k)0 = 1} [ {N � 1} . (3)

The following lemma states some properties of G
t,i

.
Lemma 1. For any value of g we have

E [G
t,i

] =

1

o
t,i

� 1

o
t,i

(1� o
t,i

)

N�1

E
⇥
G2

t,i

⇤
=

2� o
t,i

o2
t,i

+

1

o2
t,i

(1� o
t,i

)

N�2⇥

⇥
⇣
o2
t,i

+ o
t,i

� 2 + 2o
t,i

(N � 2)(o
t,i

� 1)

⌘

Proof. The proof follows directly from using the definition
of G

t,i

and simplifying the sums

E [G
t,i

] =

N�2X

k=1

⇥
ko

t,i

(1� o
t,i

)

k�1

⇤
+

+ (N � 1) (1� o
t,i

)

N�2,

E
⇥
G2

t,i

⇤
=

N�2X

k=1

⇥
k2o

t,i

(1� o
t,i

)

k�1

⇤
+

+ (N � 1)

2

(1� o
t,i

)

N�2.

Using Lemma 1, it is easy to see that G
t,i

follows a trun-
cated geometric law in the sense that

P [G
t,i

= m] = P
⇥
min

�
G?

t,i

, N � 1

 
= m

⇤

holds for all m 2 [N � 1]. Using all this notation, we
construct an estimate of `

t,i

as

b̀
t,i

= G
t,i

O
t,i

`
t,i

. (4)

The rationale underlying this definition of G
t,i

is rather
delicate. First, note that p

t,i

is deterministic given the his-
tory F

t�1

and therefore, does not depend on O
t,i

. Second,

Algorithm 1 Exp3-Res
1: Input:
2: Set of actions [N ].
3: Initialization:
4: bL

0,i

 0 for i 2 [N ].
5: Run:
6: for t = 1 to T do
7: ⌘

t

 
r

logN
.⇣

N2

+

P
t�1

s=1

P
N

i=1

p
s,i

(

b̀
s,i

)

2

⌘
.

8: w
t,i

 (1/N) exp(�⌘
t

bL
t�1,i

) for i 2 [N ].
9: W

t

 P
N

i=1

w
t,i

.
10: p

t,i

 w
t,i

/W
t

.
11: Choose I

t

⇠ p
t

= (p
t,1

, . . . , p
t,N

).
12: Receive the observation set O

t

.
13: Receive the pairs {i, `

t,i

} for all i s.t. O
t,i

= 1.
14: Compute G

t,i

for all i 2 [N ] using (3).
15: b̀

t,i

 `
t,i

O
t,i

G
t,i

for all i 2 [N ].
16: bL

t,i

=

bL
t�1,i

+

b̀
t,i

for all i 2 [N ].
17: end for

O
t,i

is also independent of O
t,j

for j 62 {i, I
t

}. As a result,
G

t,i

is independent of O
t,i

, and we can use the identity
E
t

[G
t,i

O
t,i

] = E
t

[G
t,i

]E
t

[O
t,i

]. The next lemma relates
the loss estimates (4) to the true losses, relying on the ob-
servations above and the assumption r

t

� log T

2N�2

.

Lemma 2. Assume r
t

� log T

2N�2

. Then, for all t and i,

0  `
t,i

� E
t

h
b̀
t,i

i
 1p

T
.

Proof. Fix an arbitrary t and i. Using Lemma 1 along with
E
t

[O
t,i

] = o
t,i

and the independence of G
t,i

and O
t,i

, we
get

E
t

h
b̀
t,i

i
= E

t

[G
t,i

O
t,i

`
t,i

] = `
t,i

� `
t,i

(1� o
t,i

)

N�1,

which immediately implies the lower bound on `
t,i

�
E
t

h
b̀
t,i

i
. For proving the upper bound, observe that

`
t,i

(1� o
t,i

)

N�1  (1� r
t

)

N�1  e�rt(N�1)  1p
T

holds by our assumption on r
t

, where we used the elemen-
tary inequality 1� x  ex that holds for all x 2 R.

The next theorem states our main result concerning
Exp3-Res with an adaptive learning rate.

Theorem 1. Assume that r
t

� log T

2N�2

holds for all t and

set

⌘
t

=

s
logN

N2

+

P
t�1

s=1

P
N

i=1

p
s,i

(

b̀
s,i

)

2

.

N-2 samples from Bernoulli(rt)   … R(k) 

N-2 samples from pti … P(k) 

O’(k) = P(k) + (1-P(k))R(k) 

Gti =  min{k : O’(k) = 1} U {N-1} 

E[Gti] ≈ 1/(pti +(1-pti)rt) 

If rt ≥ (log T)/(2N-2) then
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(a) Static sequence (rt)
T
t , rt = 0
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(b) Static sequence (rt)
T
t , rt = 0.06 ⇡

log(T )/(2N � 2)
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(c) Changing sequence (rt)
T
t with uni-

formly distributed rt on [0, 0.2]
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(d) Sequence (rt)
T
t generated as a random

walk on [0, 0.1]
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(e) Sequence (rt)
T
t generated as a random

walk on [0, 1]
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(f) Total regret for different values of static
(rt)

T
t

Figure 1: Comparison of algorithm for different amount of side information sequences (different sequences (r
t

)

T

t

)

6 CONCLUSION & FUTURE WORK

In this paper, we considered multi-armed bandit prob-
lems with stochastic side observations modeled by Erdős–
Rényi graphs. Our contribution is a computationally effi-
cient algorithm that operates under the assumption r

t

�
log T/(2N � 2), which essentially guarantees that at least
one piece of side observation is generated in every round,
with high probability. In this case, our algorithm guar-

antees a regret bound of O
✓q

logN
P

T

t=1

1

rt

◆
(Theo-

rem 1). In this section, we discuss several open questions
regarding this result.

The most obvious question is whether it is possible to re-
move our assumptions on the values of r

t

. We can only
give a definite answer in the simple case when all r

t

’s are
identical: In this case, one can think of simply computing
the empirical frequency br

t

of all previous side observations
in round t to estimate the constant r, plug the result into (1),
and then use the resulting loss estimates in an exponential-
weighting scheme. It is relatively straightforward (but also
rather tedious) to show that the resulting algorithm satisfies
a regret bound of eO

⇣p
T/r

⌘
for all possible values of r,

thanks to the fact that r̂
t

quickly concentrates around the

true value of r. Notice however that this approach clearly
breaks down if the r

t

’s change over time.

In the case of changing r
t

’s, the number of observations
we can use to estimate r

t

is severely limited, so much that
we cannot expect any direct estimate of r

t

to concentrate
around the true value. Our algorithm proposed in Section 3
gets around this problem by directly estimating the impor-
tance weights 1/o

t,i

instead of r
t

, which enables us to con-
struct reliable loss estimates, although only at the price of
our assumption on the range of r

t

. While we acknowledge
that this assumption can be difficult to confirm a priori in
practice, we remark that we find it quite surprising that any

algorithm whatsoever can take advantage of such limited
observations, even under such a restriction. We also point
out that for values of r

t

that are consistently below our
bound, it is not possible to substantially improve the regret
bounds of Exp3 which are of eO

⇣p
TN

⌘
, as shown by the

lower bounds of Alon et al. (2013). We expect that in sev-
eral practical applications, one can verify whether the r

t

’s
satisfy our assumption or not, and decide to use Exp3-Res
or Exp3 accordingly. In fact, our experiments suggest that
our algorithm performs well even if neither of these two
assumptions are verified: we have seen that the empirical
performance of Exp3-Res is only slightly worse than that

came from. Relaxing this assumption, however, has to
come with a price: As the very recent results of Cohen et al.
(2016) show, achieving nontrivial advantages from side
observations may be impossible without perfectly known
side-observation graphs when an adversary is allowed to
pick both the losses and the side-observation graphs. On
the positive side, Cohen et al. offer efficient algorithms
achieving strong improvements over the standard regret
guarantees under the assumption that the losses are gen-
erated in an i.i.d. fashion and the graphs may be gener-
ated adversarially. Complementing these results, we con-
sider the case of adversarial losses and make the assump-
tion that the side-observation graph in round t is gener-
ated from an Erd

˝

os–R

´

enyi model with an unknown and
time-dependent parameter r

t

. The main challenge for the
learner is then the necessity to exploit the side observa-
tions despite not knowing the sequence (r

t

). It is easy to
see that this model can be equivalently understood as each
non-chosen arm revealing its loss with probability r

t

, in-
dependently of all other observations. That said, we still
find it useful to think of the side observations as being
generated from an Erdős–Rényi model, as it allows di-
rect comparisons with the related literature. In particu-
lar, the case of learning with Erdős–Rényi side-observation
graphs was considered before by Alon et al. (2013): Given
full access to the underlying graph structure, their algo-
rithm Exp3-SET can be shown to guarantee a regret bound
of O�pP

t

(1/r
t

)(1� (1� r
t

)

N

) logN
�
. While the as-

sumption of having full access to the graph be dropped rel-
atively easily in this particular case, exact knowledge of r

t

seems to be crucial for constructing reliable loss estimates
and use them to guide the choice of action in each round.

It turns out that the problem of estimating r
t

while striv-
ing to perform efficiently is in fact a major difficulty in our
setting. Indeed, as we allow r

t

to change arbitrarily be-
tween each round, we cannot rely on any past observations
to construct well-concentrated estimates of these parame-
ters. That is, the main challenge is estimating r

t

from only
a handful of samples. The core technical tool underlying
our approach is a direct estimation procedure for the losses
that does not estimate r

t

explicitly.

Armed with this estimation procedure, we propose a learn-
ing algorithm called Exp3-Res that guarantees a regret of
O(

pP
t

(1/r
t

) logN), provided that r
t

� log T/(2N�2)

holds for all rounds t. This assumption essentially corre-
sponds to requiring that, with high probability, at least 1
side observation is produced in every round, or, in other
words, the side-observation graphs encountered are all non-

empty. Notice that for the assumed range of r
t

’s, our regret
bound improves upon the standard regret bound of Exp3,
which is of O(

p
NT logN). It is easy to see that when r

t

becomes smaller than 1/N , side observations become un-
reliable and the bound of Exp3 cannot be improved. That
is, if our assumption cannot be verified a priori, then ignor-

ing all side observations and using the Exp3 algorithm of
Auer et al. (2002a) instead can yield a better performance.
On the other hand, given that our assumption holds, our
bounds cannot be significantly improved as suggested by
the lower-bound of ⌦(

p
T/r) proved for a static r by Alon

et al. 2013.

Many other partial-information settings have been studied
in previous work. One of the simplest of these settings
is the label-efficient prediction game considered by Cesa-
Bianchi et al. (2005), where the learner can observe either
losses of all the actions or none of them, not even the loss
of the chosen action. This observation can be queried by
the learner at most an " < 1 fraction of the total number of
rounds, which means no losses are observed in the remain-
ing rounds. An even more restricted information setting,
label efficient bandit feedback was considered by Allen-
berg et al. (2006), where the learner can only query the loss
of the chosen action, instead of all losses (see also Audibert
and Bubeck, 2010). Algorithms for these two settings have
regret of eO(

p
T/") and eO(

p
NT/"), respectively. While

these bounds may appear very similar to ours, notice that
our setting offers a more intricate (and, for some problems,
more realistic) feedback scheme, which also turns out to be
much more challenging to exploit. In another related set-
ting, Seldin et al. (2014) consider M side observations that
the learner can proactively choose in each round without
limitations. Seldin et al. deliver an algorithm with regret
of eO(

p
(N/M)T ), also proving that choosing M observa-

tions uniformly at random is minimax optimal; given this
sampling scheme, it is not even necessary to observe the
loss of the chosen action. Their result is comparable to
ours and the result by Alon et al. (2013) for Erdős–Rényi
observation graphs with parameter r = M/N . However,
Seldin et al. also assume that M is known, which obviates
the need for estimating r. We provide a more technical dis-
cussion on the related work in Section 6.

In our paper, we assume that, just like the observation prob-
abilities, the losses are adversarial, that is, they can change
at each time step without restrictions. Learning with side
observations and stochastic losses was studied by Caron
et al. (2012) and Buccapatnam et al. (2014). While this
is an easier setting that the adversarial one, the authors as-
sumed, in both cases, that the graphs have to be known
in advance. Recently, Carpentier and Valko (2016) stud-
ied another stochastic setting where the graph is also not
known in advance, however their setting considers differ-
ent feedback and loss structure (influence maximization)
which differs from the side-observation setting.

Furthermore, Alon et al. (2015) considered a strictly more
difficult setting than ours, where the loss of the chosen ac-
tion may not be a part of the received feedback.

Lower bound (Alon et al. 2013)

Get rid of rt ≥ (log T)/(2N-2)?



MORE GRAPH BANDITS AND BEYOND!
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