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Online SSL with Graphs: Graph
Quantization

An idea: incremental k-centers

Doubling algorithm of Charikar et al. Charikar et al., 1997

Keeps up to k centers Ct = {c1, c2, . . . } with

• Distance ci , cj ∈ Ct is at least ≥ R
• For each new xt , distance to some ci ∈ Ct is less than R .
• |Ct | ≤ k
• if not possible, R is doubled
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Online SSL with Graphs: Graph
Quantization
Online k-centers

1: an unlabeled xt , a set of centroids Ct−1, multiplicities vt−1

2: if (|Ct−1| = k + 1) then
3: R ← mR
4: greedily repartition Ct−1 into Ct such that:
5: no two vertices in Ct are closer than R
6: for any ci ∈ Ct−1 exists cj ∈ Ct such that d(ci , cj) < R
7: update vt to reflect the new partitioning
8: else
9: Ct ← Ct−1

10: vt ← vt−1

11: end if
12: if xt is closer than R to any ci ∈ Ct then
13: vt(i)← vt(i) + 1
14: else
15: vt(|Ct |+ 1)← 1

16: end if
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Online SSL with Graphs: Graph
Quantization
Doubling algorithm Charikar et al., 1997

To reduce growth of R , we use R ← R × R , with R ≥ 1

Ct is changing. How far can x be from some c?

R +
R
R +

R
R2

+ · · · = R
(
1 +

1

R +
1

R2
+ · · ·

)
=

RR
R − 1

Guarantees: 8-approximation algorithm.

Why not incremental k-means?
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Online SSL with Graphs

Video examples

http://www.bkveton.com/videos/Coffee.mp4

http://www.bkveton.com/videos/Ad.mp4

https://misovalko.github.io/publications/kveton2009nipsdemo.
adaptation.mov

https://misovalko.github.io/publications/kveton2009nipsdemo.
officespace.mov

https://misovalko.github.io/publications/press-intel-2015.mp4
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SSL with Graphs: Some experimental results
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