

Graphs in Machine Learning

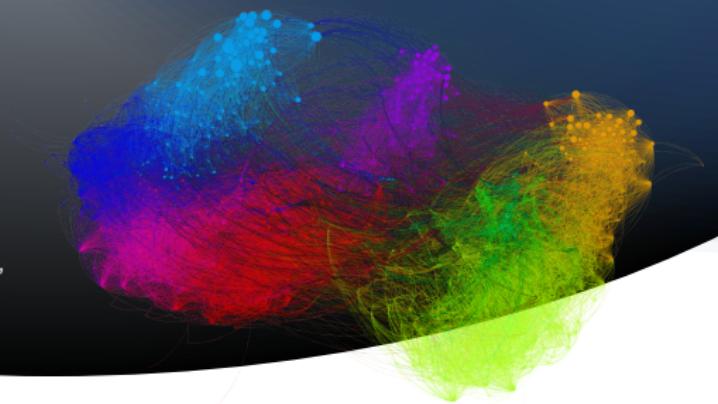
Online SSL Introduction

Problem Setup and Challenges

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Branislav Kveton,
Mihal Belkin, Jerry Zhu



Online SSL with Graphs

Offline learning setup

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll n$, find $\{y_i\}_{i=n_l+1}^N$
(transductive) or find f predicting y well beyond that
(inductive).

Online SSL with Graphs

Offline learning setup

Given $\{x_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll n$, find $\{y_i\}_{i=n_l+1}^N$
(transductive) or find f predicting y well beyond that
(inductive).

Source: Sweeney Todd (2007)

Online SSL with Graphs

Offline learning setup

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll n$, find $\{y_i\}_{i=n_l+1}^N$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Source: Sweeney Todd (2007)

Online learning setup

At the beginning: $\{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ from \mathbb{R}^d

Online SSL with Graphs

Offline learning setup

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll n$, find $\{y_i\}_{i=n_l+1}^N$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Source: Sweeney Todd (2007)

Online learning setup

At the beginning: $\{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ from \mathbb{R}^d

At time t :

receive \mathbf{x}_t

Online SSL with Graphs

Offline learning setup

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll n$, find $\{y_i\}_{i=n_l+1}^N$
(transductive) or find f predicting y well beyond that
(inductive).

Source: Sweeney Todd (2007)

Online learning setup

At the beginning: $\{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ from \mathbb{R}^d

At time t :

receive \mathbf{x}_t

predict y_t

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t
- 4: Infer labels

$$\mathbf{f}_u = (\mathbf{L}_{uu} + \gamma_g \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_l)$$

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t
- 4: Infer labels

$$\mathbf{f}_u = (\mathbf{L}_{uu} + \gamma_g \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_l)$$

- 5: Predict $\hat{y}_t =$

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t
- 4: Infer labels

$$\mathbf{f}_u = (\mathbf{L}_{uu} + \gamma_g \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_l)$$

- 5: Predict $\hat{y}_t = \text{sgn}(\mathbf{f}_u(t))$
- 6: **end while**

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t
- 4: Infer labels

$$\mathbf{f}_u = (\mathbf{L}_{uu} + \gamma_g \mathbf{I})^{-1} (\mathbf{W}_{uI} \mathbf{f}_I)$$

- 5: Predict $\hat{y}_t = \text{sgn}(\mathbf{f}_u(t))$
- 6: **end while**

What is wrong with this solution?

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t
- 4: Infer labels

$$\mathbf{f}_u = (\mathbf{L}_{uu} + \gamma_g \mathbf{I})^{-1} (\mathbf{W}_{uI} \mathbf{f}_I)$$

- 5: Predict $\hat{y}_t = \text{sgn}(\mathbf{f}_u(t))$
- 6: **end while**

What is wrong with this solution?

The cost and memory of the operations.

Online SSL with Graphs

Online HFS: Straightforward solution

- 1: **while** new unlabeled example x_t comes **do**
- 2: Add x_t to graph $G(\mathbf{W})$
- 3: Update \mathbf{L}_t
- 4: Infer labels

$$\mathbf{f}_u = (\mathbf{L}_{uu} + \gamma_g \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_l)$$

- 5: Predict $\hat{y}_t = \text{sgn}(\mathbf{f}_u(t))$
- 6: **end while**

What is wrong with this solution?

The cost and memory of the operations.

What can we do?

Online SSL with Graphs

Let's keep only k vertices!

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Diagonal $\mathbf{V} \equiv$ **multiplicity**.

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Diagonal $\mathbf{V} \equiv$ **multiplicity**. We have \mathbf{V}_{ii} copies of centroid i .

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Diagonal $\mathbf{V} \equiv$ **multiplicity**. We have \mathbf{V}_{ii} copies of centroid i .

Can we compute it compactly?

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Diagonal $\mathbf{V} \equiv$ **multiplicity**. We have \mathbf{V}_{ii} copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

$$\boldsymbol{\ell}^q = (\mathbf{L}_{uu}^q + \gamma_g \mathbf{V})^{-1} \mathbf{W}_{ul}^q \boldsymbol{\ell}_l \quad \text{where} \quad \mathbf{W}^q = \mathbf{V} \widetilde{\mathbf{W}}^q \mathbf{V}$$

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Diagonal $\mathbf{V} \equiv$ **multiplicity**. We have \mathbf{V}_{ii} copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

$$\boldsymbol{\ell}^q = (\mathbf{L}_{uu}^q + \gamma_g \mathbf{V})^{-1} \mathbf{W}_{ul}^q \boldsymbol{\ell}_l \quad \text{where} \quad \mathbf{W}^q = \mathbf{V} \widetilde{\mathbf{W}}^q \mathbf{V}$$

Proof?

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Diagonal $\mathbf{V} \equiv$ **multiplicity**. We have \mathbf{V}_{ii} copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

$$\boldsymbol{\ell}^q = (\mathbf{L}_{uu}^q + \gamma_g \mathbf{V})^{-1} \mathbf{W}_{ul}^q \boldsymbol{\ell}_l \quad \text{where} \quad \mathbf{W}^q = \mathbf{V} \widetilde{\mathbf{W}}^q \mathbf{V}$$

Proof? Using electric circuits.

Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k **centroids** with $\widetilde{\mathbf{W}}^q$ weights.

Each centroid represents *several* others.

Diagonal $\mathbf{V} \equiv$ **multiplicity**. We have \mathbf{V}_{ii} copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

$$\boldsymbol{\ell}^q = (\mathbf{L}_{uu}^q + \gamma_g \mathbf{V})^{-1} \mathbf{W}_{ul}^q \boldsymbol{\ell}_l \quad \text{where} \quad \mathbf{W}^q = \mathbf{V} \widetilde{\mathbf{W}}^q \mathbf{V}$$

Proof? Using electric circuits.

Why do we keep the multiplicities?

Online SSL with Graphs

Online HFS with Graph Quantization

1: **Input**

2: k number of representative nodes

Online SSL with Graphs

Online HFS with Graph Quantization

1: **Input**

2: k number of representative nodes

3: **Initialization**

4: \mathbf{V} matrix of multiplicities with 1 on diagonal

Online SSL with Graphs

Online HFS with Graph Quantization

- 1: **Input**
- 2: k number of representative nodes
- 3: **Initialization**
- 4: \mathbf{V} matrix of multiplicities with 1 on diagonal
- 5: **while** new unlabeled example \mathbf{x}_t comes **do**
- 6: Add \mathbf{x}_t to graph G
- 7: **if** # nodes $> k$ **then**
- 8: $\text{quantize } G$
- 9: **end if**

Online SSL with Graphs

Online HFS with Graph Quantization

- 1: **Input**
- 2: k number of representative nodes
- 3: **Initialization**
- 4: \mathbf{V} matrix of multiplicities with 1 on diagonal
- 5: **while** new unlabeled example \mathbf{x}_t comes **do**
- 6: Add \mathbf{x}_t to graph G
- 7: **if** # nodes $> k$ **then**
- 8: $\text{quantize } G$
- 9: **end if**
- 10: Update \mathbf{L}_t of $G(\mathbf{VWV})$

Online SSL with Graphs

Online HFS with Graph Quantization

```
1: Input  
2:    $k$  number of representative nodes  
3: Initialization  
4:    $\mathbf{V}$  matrix of multiplicities with 1 on diagonal  
5: while new unlabeled example  $\mathbf{x}_t$  comes do  
6:   Add  $\mathbf{x}_t$  to graph  $G$   
7:   if # nodes >  $k$  then  
8:     quantize  $G$   
9:   end if  
10:  Update  $\mathbf{L}_t$  of  $G(\mathbf{VWV})$   
11:  Infer labels  
12:  Predict  $\hat{y}_t = \text{sgn}(\mathbf{f}_u(t))$   
13: end while
```

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>