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Online SSL with Graphs

Offline learning setup

Given {x;}_; from R? and {y;}",, with n; < n, find {y,-},’-V:n/Jrl
(transductive) or find f predicting y well beyond that
(inductive).
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Offline learning setup
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Offline learning setup
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Online learning setup
At the beginning: {x;,y;}7., from RY
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Online SSL with Graphs

Offline learning setup

Given {x;}/_; from R9 and {y;}!",, with n; < n, find {y,-},’-V:m+1
(transductive) or find f predicting y well beyond that
(inductive).
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Online learning setup
At the beginning: {x;,y;}7., from RY
At time t:

receive X
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Online SSL with Graphs

Offline learning setup

Given {x;}/_; from R9 and {y;}!",, with n; < n, find {y,-},’-V:m+1
(transductive) or find f predicting y well beyond that
(inductive).
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Source: Sweeney Todd (2007)

Online learning setup
At the beginning: {x;,y;}7., from RY
At time t:

receive X

predict y;
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Online SSL with Graphs

Online HFS: Straightforward solution

1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
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Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3: Update L;
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Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3: Update L;
4:  Infer labels

Iy = (Luu + ’\/’gl)il (Wulfl)
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Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3: Update L;
4:  Infer labels

Iy = (Luu + ’\/’gl)il (Wulfl)

5.  Predict y; =
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Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3: Update L;
4:  Infer labels

Iy = (Luu + '\/’gl)il (Wulfl)

5. Predict y; = sgn (f, (1))
6: end while
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Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3: Update L;
4:  Infer labels

Iy = (Luu + '\/’gl)il (Wulfl)

5. Predict y; = sgn (f, (1))
6: end while

What is wrong with this solution?
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Online HFS: Straightforward solution
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Online SSL with Graphs

Online HFS: Straightforward solution
1: while new unlabeled example x; comes do
2:  Add x; to graph G(W)
3: Update L;
4:  Infer labels

Iy = (Luu + A/gl)il (Wulfl)

5. Predict y; = sgn (f, (1))
6: end while

What is wrong with this solution?

What can we do?
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Online SSL with Graphs

Let's keep only k vertices!
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Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with W weights.
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Online SSL with Graphs

Let's keep only k vertices!
Limit memory to k centroids with W weights.
Each centroid represents several others.

Diagonal V = multiplicity.

Michal Valko — Graphs in Machine Learning



Online SSL with Graphs

Let's keep only k vertices!
Limit memory to k centroids with W weights.

Each centroid represents several others.

Diagonal V = multiplicity. We have V;; copies of centroid i.
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Online SSL with Graphs

Let's keep only k vertices!
Limit memory to k centroids with W weights.

Each centroid represents several others.

Diagonal V = multiplicity. We have V;; copies of centroid i.

Can we compute it compactly?

Michal Valko — Graphs in Machine Learning



Online SSL with Graphs

Let's keep only k vertices!
Limit memory to k centroids with W weights.

Each centroid represents several others.
Diagonal V = multiplicity. We have V;; copies of centroid i.

Can we compute it compactly? Compact harmonic solution.

09 = (L3, +7gV)"'W98  where W9= VWiV
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Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with W weights.
Each centroid represents several others.
Diagonal V = multiplicity. We have V;; copies of centroid i.

Can we compute it compactly? Compact harmonic solution.
09 = (L3, +7gV)"'W98  where W9= VWiV

Proof?
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Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with W weights.
Each centroid represents several others.
Diagonal V = multiplicity. We have V;; copies of centroid i.

Can we compute it compactly? Compact harmonic solution.
09 = (L3, +7gV)"'W98  where W9= VWiV

Proof? Using electric circuits.
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Online SSL with Graphs

Let's keep only k vertices!

Limit memory to k centroids with W weights.
Each centroid represents several others.
Diagonal V = multiplicity. We have V;; copies of centroid i.

Can we compute it compactly? Compact harmonic solution.
09 = (L3, +7gV)"'W98  where W9= VWiV

Proof? Using electric circuits.

Why do we keep the multiplicities?
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2.k number of representative nodes
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Online SSL with Graphs

Online HFS with Graph Quantization

: Input

k number of representative nodes

. Initialization

V matrix of multiplicities with 1 on diagonal

B CORNN R
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2:  k number of representative nodes
3: Initialization
4: 'V matrix of multiplicities with 1 on diagonal
5. while new unlabeled example x; comes do
6: Add x; to graph G
7
8
9

if # nodes > k then
quantize G
end if
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Online HFS with Graph Quantization
1: Input
2:  k number of representative nodes
3: Initialization
4: 'V matrix of multiplicities with 1 on diagonal
5. while new unlabeled example x; comes do
6: Add x; to graph G
7
8
9

if # nodes > k then
quantize G
end if
10:  Update Ly of G(VWYV)
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Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2:  k number of representative nodes
3: Initialization
4: 'V matrix of multiplicities with 1 on diagonal
5. while new unlabeled example x; comes do
6: Add x; to graph G
7
8
9

if # nodes > k then

quantize G
B end if
10:  Update Ly of G(VWYV)
11:  Infer labels

12:  Predict y; = sgn (f, (1))
13: end while
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https://misovalko.github.io/mva-ml-graphs.html

