
MVA

Graphs in Machine Learning
Online SSL Introduction
Problem Setup and Challenges

Michal Valko
Inria & ENS Paris-Saclay, MVA

Partially based on material by: Branislav Kveton,
Mikhail Belkin, Jerry Zhu



Online SSL with Graphs
Offline learning setup
Given {xi}N

i=1 from Rd and {yi}nl
i=1, with nl � n, find {yi}N

i=nl+1

(transductive) or find f predicting y well beyond that
(inductive).

Source: Sweeney Todd (2007)

Online learning setup
At the beginning: {xi , yi}nl

i=1 from Rd

At time t:
receive xt
predict yt
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Online SSL with Graphs
Online HFS: Straightforward solution

1: while new unlabeled example xt comes do
2: Add xt to graph G(W)

3: Update Lt
4: Infer labels

fu = (Luu + γgI)−1 (Wul fl)

5: Predict ŷt = sgn (fu (t))
6: end while

What is wrong with this solution?

The cost and memory of the operations.

What can we do?
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Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity.

We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly?

Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof?

Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Let’s keep only k vertices!

Limit memory to k centroids with W̃q weights.

Each centroid represents several others.

Diagonal V ≡ multiplicity. We have Vii copies of centroid i .

Can we compute it compactly? Compact harmonic solution.

`q = (Lq
uu + γgV )−1Wq

ul`l where Wq = V W̃qV

Proof? Using electric circuits.

Why do we keep the multiplicities?

Michal Valko – Graphs in Machine Learning 4/1



Online SSL with Graphs

Online HFS with Graph Quantization
1: Input
2: k number of representative nodes

3: Initialization
4: V matrix of multiplicities with 1 on diagonal
5: while new unlabeled example xt comes do
6: Add xt to graph G
7: if # nodes > k then
8: quantize G
9: end if

10: Update Lt of G(VWV)
11: Infer labels
12: Predict ŷt = sgn (fu (t))
13: end while
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