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Online SSL with Graphs: Analysis
Want to bound 1

N
∑N

t=1(f̂soq,t [t]−yt)
2

What can we guarantee?

Three sources of error

• generalization error — if all data: (f̂s,t − yt)
2

• online error — data only incrementally: (f̂so,t [t]− f̂s,t)2

• quantization error — memory limitation: (f̂soq,t [t]− f̂so,t [t])2

All together:

1
N

N∑
t=1

(f̂soq,t [t]−yt)
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2N
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(f̂so,t [t]− f̂s,t)2+ 9
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(f̂soq,t [t]− f̂so,t [t])2
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Online SSL with Graphs: Analysis
Bounding transduction error (f̂s,t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(ˆ̀?) ≤ R̂(ˆ̀?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2

[ √
2

γg + 1
+
√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]
holds with the probability of 1− δ, where

R(ˆ̀?) =
1

N
∑

t
(f̂s,t − yt)

2 and R̂(ˆ̀?) =
1

nl

∑
t∈l

(f̂s,t − yt)
2

How should we set γg? Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.

Michal Valko – Graphs in Machine Learning 3/1



Online SSL with Graphs: Analysis
Bounding transduction error (f̂s,t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(ˆ̀?) ≤ R̂(ˆ̀?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2

[ √
2

γg + 1
+
√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]
holds with the probability of 1− δ, where

R(ˆ̀?) =
1

N
∑

t
(f̂s,t − yt)

2 and R̂(ˆ̀?) =
1

nl

∑
t∈l

(f̂s,t − yt)
2

How should we set γg? Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.

Michal Valko – Graphs in Machine Learning 3/1



Online SSL with Graphs: Analysis
Bounding transduction error (f̂s,t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(ˆ̀?) ≤ R̂(ˆ̀?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2

[ √
2

γg + 1
+
√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]
holds with the probability of 1− δ, where

R(ˆ̀?) =
1

N
∑

t
(f̂s,t − yt)

2 and R̂(ˆ̀?) =
1

nl

∑
t∈l

(f̂s,t − yt)
2

How should we set γg?

Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.

Michal Valko – Graphs in Machine Learning 3/1



Online SSL with Graphs: Analysis
Bounding transduction error (f̂s,t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(ˆ̀?) ≤ R̂(ˆ̀?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2

[ √
2

γg + 1
+
√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]
holds with the probability of 1− δ, where

R(ˆ̀?) =
1

N
∑

t
(f̂s,t − yt)

2 and R̂(ˆ̀?) =
1

nl

∑
t∈l

(f̂s,t − yt)
2

How should we set γg? Want ∆T (β, nl , δ) = o(1)

→ β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.

Michal Valko – Graphs in Machine Learning 3/1



Online SSL with Graphs: Analysis
Bounding transduction error (f̂s,t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(ˆ̀?) ≤ R̂(ˆ̀?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2

[ √
2

γg + 1
+
√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]
holds with the probability of 1− δ, where

R(ˆ̀?) =
1

N
∑

t
(f̂s,t − yt)

2 and R̂(ˆ̀?) =
1

nl

∑
t∈l

(f̂s,t − yt)
2

How should we set γg? Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)

→ γg = Ω
(

n1+α
l

)
for any α > 0.

Michal Valko – Graphs in Machine Learning 3/1



Online SSL with Graphs: Analysis
Bounding transduction error (f̂s,t − yt)

2

If all labeled examples l are i.i.d., cl = 1 and cl � cu, then

R(ˆ̀?) ≤ R̂(ˆ̀?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2

[ √
2

γg + 1
+
√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]
holds with the probability of 1− δ, where

R(ˆ̀?) =
1

N
∑

t
(f̂s,t − yt)

2 and R̂(ˆ̀?) =
1

nl

∑
t∈l

(f̂s,t − yt)
2

How should we set γg? Want ∆T (β, nl , δ) = o(1) → β = o
(

n−1/2
l

)
→ γg = Ω

(
n1+α

l

)
for any α > 0.

Michal Valko – Graphs in Machine Learning 3/1



Online SSL with Graphs: Analysis
Bounding online error (f̂so,t [t]− f̂s,t)2

Idea: If L and L̂o are regularized, then HFSs get closer together.
since they get closer to zero

Recall ˆ̀= (C−1Q + I)−1y, where Q = L + γgI
and also v ∈ Rn×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM(A)‖v‖2

‖ˆ̀‖2 ≤
‖y‖2

λm(C−1Q + I) =
‖y‖2

λm(Q)
λM(C) + 1

≤
√nl

γg + 1

Difference between offline and online solutions:

(f̂so,t [t]− f̂s,t)2 ≤ ‖f̂so [t]− f̂s‖2∞ ≤ ‖f̂so [t]− f̂s‖22 ≤
(

2
√nl

γg + 1

)2

Again, how should we set γg ? If we want O
(

n−1/2
l

)
? Then γg = Ω

(
n3/4l

)
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Recall ˆ̀= (C−1Q + I)−1y, where Q = L + γgI
and also v ∈ Rn×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM(A)‖v‖2

‖ˆ̀‖2 ≤
‖y‖2

λm(C−1Q + I) =
‖y‖2

λm(Q)
λM(C) + 1

≤
√nl

γg + 1

Difference between offline and online solutions:

(f̂so,t [t]− f̂s,t)2 ≤ ‖f̂so [t]− f̂s‖2∞ ≤ ‖f̂so [t]− f̂s‖22 ≤
(

2
√nl

γg + 1

)2

Again, how should we set γg ? If we want O
(

n−1/2
l

)
?

Then γg = Ω
(

n3/4l

)
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Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

How are the quantized and full solution different?

ˆ̀? = min
ˆ̀∈RN

(ˆ̀− y)TC(ˆ̀− y) + ˆ̀TQˆ̀

In Q! K̂o (online) vs. K̃ (quantized)

We have: ˆ̀o = (C−1K̂o + I)−1y vs. ˆ̀oq = (C−1K̃ + I)−1y

With linear algebra we get

‖ˆ̀oq − ˆ̀o‖2 ≤
√nl
cuγ2g

‖K̂oq − K̂o‖F
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Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

The quantization error depends on ‖K̂oq − K̂o‖F = ‖L̂oq − L̂o‖F .

When can we keep ‖L̂oq − L̂o‖F under control?

Charikar guarantees distortion error of at most RR/(R − 1)

For what kind of data {xi}i=1,...,n is the distortion small?
Assume manifold M

• all {xi}i≥1 lie on a smooth d-dimensional compact M
• with boundary of bounded geometry Def. 11 of

Hein hein2007graph
– has finite volume V
– has finite surface area A
– should not intersect itself
– should not fold back onto itself
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Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

Bounding ‖L̂oq − L̂o‖F when xi ∈ M

Consider k-sphere packing? of radius r with centers contained
in M. ?only the centers are packed, not necessarily the entire ball

If k is large → r < injectivity radius of M hein2007graph

and
r < 1:

r <

(
V + AcM

kcd

)1/d
= O

(
1

k1/d

)
r -packing is a 2r -covering:

max
i=1,...,N

‖xi − c‖2 ≤ R R
R−1 ≤ 2O

(
k−1/d

)
= O

(
k−1/d

)
But what about ‖L̂oq − L̂o‖F ?
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Online SSL with Graphs: Analysis

Bounding quantization error
(

f̂soq,t [t]− f̂so,t [t]
)2

If similarity is M-Lipschitz

, L is normalized, ∀i , j
√

D̂o,ii D̂o,jj
N > cmin

‖L̂oq − L̂o‖2F ≤ O(MR2/cmin) = O(k−2/d).

Are the assumptions reasonable?
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Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

We showed ‖L̂oq − L̂o‖2F ≤ O(k−2/d)

= O(1).

1

N

N∑
t=1

(f̂soq,t [t]− f̂so,t [t])2 ≤
nl

c2uγ4g
‖L̂oq − L̂o‖2F ≤ nl

c2uγ4g

With properly setting γg , e.g., γg = Ω(n3/8
l ), we can have

1

N

N∑
t=1

(
f̂soq,t [t]−yt

)2
= O

(
n−1/2

l

)
.

What does that mean?

Michal Valko – Graphs in Machine Learning 9/1



Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

We showed ‖L̂oq − L̂o‖2F ≤ O(k−2/d) = O(1).

1

N

N∑
t=1

(f̂soq,t [t]− f̂so,t [t])2 ≤
nl

c2uγ4g
‖L̂oq − L̂o‖2F ≤ nl

c2uγ4g

With properly setting γg , e.g., γg = Ω(n3/8
l ), we can have

1

N

N∑
t=1

(
f̂soq,t [t]−yt

)2
= O

(
n−1/2

l

)
.

What does that mean?

Michal Valko – Graphs in Machine Learning 9/1



Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

We showed ‖L̂oq − L̂o‖2F ≤ O(k−2/d) = O(1).

1

N

N∑
t=1

(f̂soq,t [t]− f̂so,t [t])2 ≤
nl

c2uγ4g
‖L̂oq − L̂o‖2F

≤ nl
c2uγ4g

With properly setting γg , e.g., γg = Ω(n3/8
l ), we can have

1

N

N∑
t=1

(
f̂soq,t [t]−yt

)2
= O

(
n−1/2

l

)
.

What does that mean?

Michal Valko – Graphs in Machine Learning 9/1



Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

We showed ‖L̂oq − L̂o‖2F ≤ O(k−2/d) = O(1).

1

N

N∑
t=1

(f̂soq,t [t]− f̂so,t [t])2 ≤
nl

c2uγ4g
‖L̂oq − L̂o‖2F ≤ nl

c2uγ4g

With properly setting γg , e.g., γg = Ω(n3/8
l ), we can have

1

N

N∑
t=1

(
f̂soq,t [t]−yt

)2
= O

(
n−1/2

l

)
.

What does that mean?

Michal Valko – Graphs in Machine Learning 9/1



Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

We showed ‖L̂oq − L̂o‖2F ≤ O(k−2/d) = O(1).

1

N

N∑
t=1

(f̂soq,t [t]− f̂so,t [t])2 ≤
nl

c2uγ4g
‖L̂oq − L̂o‖2F ≤ nl

c2uγ4g

With properly setting γg , e.g., γg = Ω(n3/8
l ), we can have

1

N

N∑
t=1

(
f̂soq,t [t]−yt

)2
= O

(
n−1/2

l

)
.

What does that mean?

Michal Valko – Graphs in Machine Learning 9/1



Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

We showed ‖L̂oq − L̂o‖2F ≤ O(k−2/d) = O(1).

1

N

N∑
t=1

(f̂soq,t [t]− f̂so,t [t])2 ≤
nl

c2uγ4g
‖L̂oq − L̂o‖2F ≤ nl

c2uγ4g

With properly setting γg , e.g., γg = Ω(n3/8
l ), we can have

1

N

N∑
t=1

(
f̂soq,t [t]−yt

)2
= O

(
n−1/2

l

)
.

What does that mean?

Michal Valko – Graphs in Machine Learning 9/1



Online SSL with Graphs: Analysis
Bounding quantization error

(
f̂soq,t [t]− f̂so,t [t]

)2

We showed ‖L̂oq − L̂o‖2F ≤ O(k−2/d) = O(1).

1

N

N∑
t=1

(f̂soq,t [t]− f̂so,t [t])2 ≤
nl

c2uγ4g
‖L̂oq − L̂o‖2F ≤ nl

c2uγ4g

With properly setting γg , e.g., γg = Ω(n3/8
l ), we can have

1

N

N∑
t=1

(
f̂soq,t [t]−yt

)2
= O

(
n−1/2

l

)
.

What does that mean?

Michal Valko – Graphs in Machine Learning 9/1



Michal Valko
michal.valko@inria.fr

Inria & ENS Paris-Saclay, MVA

https://misovalko.github.io/mva-ml-graphs.html

https://misovalko.github.io/mva-ml-graphs.html

