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The GraphLab abstraction

Under the hood: tabular representation
Columns:

__id int
f float

Rows: 9

Data:
+------+------+
| __id | f |
+------+------+
| 5 | 0.51 |
| 7 | 0.82 |
| 10 | 0.08 |
| 2 | 0.82 |
| 6 | 0.85 |
| 9 | 0.83 |
| 3 | 0.18 |
| 1 | 0.35 |
| 4 | 0.36 |
+------+------+
[9 rows x 2 columns]

Columns:
__src_id int
__dst_id int
weight float

Rows: 26

Data:
+----------+----------+----------+
| __src_id | __dst_id | weight |
+----------+----------+----------+
| 7 | 5 | 0.13185 |
| 5 | 7 | 0.13185 |
| 7 | 7 | 0.026779 |
| 10 | 7 | 0.57121 |
| 7 | 10 | 0.57121 |
| 10 | 2 | 0.94047 |
| 7 | 6 | 0.64528 |
| 5 | 3 | 0.93374 |
| 10 | 3 | 0.31713 |
| 5 | 1 | 0.57796 |
+----------+----------+----------+
[26 rows x 3 columns]
Note: Only the head of the SFrame is printed.
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The GraphLab abstraction

• The graph is immutable. why?

• All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself

only access local data

• Functional programming approach
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The GraphLab abstraction

triple_apply(triple_apply_fn , mutated_fields , input_fields=None)

processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:
... LOCK (triple.source, triple.target)
... (source, edge, target) = triple_apply_fn(triple)
... UNLOCK (triple.source, triple.target)
... END PARALLEL FOR

• No guarantees on order of execution

• Updating (src,edge,dst) violates immutability
• triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src',edge',dst')
use return values to build a new graph
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The GraphLab abstraction

triple_apply_fn is a pure function

Function in the mathematical sense, same input gives same output.
1 def triple_apply_fn(src, edge, dst):
2 #can only access data stored in src, edge, and dst,
3 #three dictionaries containing a copy of the
4 #fields indicated in mutated_fields
5 f = dst['f']
6
7 #inputs are copies , this does not change original edge
8 edge['weight'] = g(f)
9

10 return ({'f': dst['f']}, edge, dst)
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The GraphLab abstraction

An example, computing degree of nodes

1 def degree_count_fn (src, edge, dst):
2 src['degree'] += 1
3 dst['degree'] += 1
4 return (src, edge, dst)
5
6 G_count = G.triple_apply(degree_count_fn , 'degree')
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The GraphLab abstraction
Slightly more complicated example, suboptimal pagerank

1 #assume each node in G has a field 'degree' and 'pagerank'
2 #initialize 'pagerank' = 1/n for all nodes
3
4 def weight_count_fn (src, edge, dst):
5 dst['degree'] += edge['weight']
6 return (src, edge, dst)
7
8 def pagerank_step_fn (src, edge, dst):
9 dst['pagerank'] += (edge['weight']*src['pagerank']

10 /dst['degree'])
11 return (src, edge, dst)
12
13 G_pagerank = G.triple_apply(weight_count_fn , 'degree')
14
15 while not converged(G_pagerank):
16 G_pagerank = G_pagerank.triple_apply(
17 pagerank_step_fn , 'pagerank')

How many iterations to convergence?
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