
MVA

Graphs in Machine Learning
GraphLab Abstraction
Immutable Graphs and Functional Programming

Michal Valko
Inria & ENS Paris-Saclay, MVA

Partially based on material by: Rob Fergus, Nikhil Srivastava,
Yiannis Koutis, Joshua Batson, Daniel Spielman

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning 2/1

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning 3/1

The GraphLab abstraction

Under the hood: tabular representation
Columns:

__id int
f float

Rows: 9

Data:
+------+------+
| __id | f |
+------+------+
5	0.51
7	0.82
10	0.08
2	0.82
6	0.85
9	0.83
3	0.18
1	0.35
4	0.36
+------+------+
[9 rows x 2 columns]

Columns:
__src_id int
__dst_id int
weight float

Rows: 26

Data:
+----------+----------+----------+
| __src_id | __dst_id | weight |
+----------+----------+----------+
7	5	0.13185
5	7	0.13185
7	7	0.026779
10	7	0.57121
7	10	0.57121
10	2	0.94047
7	6	0.64528
5	3	0.93374
10	3	0.31713
5	1	0.57796
+----------+----------+----------+
[26 rows x 3 columns]
Note: Only the head of the SFrame is printed.

Michal Valko – Graphs in Machine Learning 4/1

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning 5/1

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning 5/1

The GraphLab abstraction

Michal Valko – Graphs in Machine Learning 5/1

The GraphLab abstraction

• The graph is immutable. why?

• All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself

only access local data

• Functional programming approach

Michal Valko – Graphs in Machine Learning 6/1

The GraphLab abstraction

• The graph is immutable. why?
• All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself

only access local data

• Functional programming approach

Michal Valko – Graphs in Machine Learning 6/1

The GraphLab abstraction

• The graph is immutable. why?
• All computations are executed asyncronously

We do not know the order of execution

We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself

only access local data

• Functional programming approach

Michal Valko – Graphs in Machine Learning 6/1

The GraphLab abstraction

• The graph is immutable. why?
• All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself

only access local data

• Functional programming approach

Michal Valko – Graphs in Machine Learning 6/1

The GraphLab abstraction

• The graph is immutable. why?
• All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself

only access local data

• Functional programming approach

Michal Valko – Graphs in Machine Learning 6/1

The GraphLab abstraction

• The graph is immutable. why?
• All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself
only access local data

• Functional programming approach

Michal Valko – Graphs in Machine Learning 6/1

The GraphLab abstraction

• The graph is immutable. why?
• All computations are executed asyncronously

We do not know the order of execution
We do not even know where the node is stored
what data can we access?

• The data is stored in the graph itself
only access local data

• Functional programming approach

Michal Valko – Graphs in Machine Learning 6/1

The GraphLab abstraction

triple_apply(triple_apply_fn , mutated_fields , input_fields=None)

processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:
... LOCK (triple.source, triple.target)
... (source, edge, target) = triple_apply_fn(triple)
... UNLOCK (triple.source, triple.target)
... END PARALLEL FOR

• No guarantees on order of execution

• Updating (src,edge,dst) violates immutability
• triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src',edge',dst')
use return values to build a new graph

Michal Valko – Graphs in Machine Learning 7/1

The GraphLab abstraction

triple_apply(triple_apply_fn , mutated_fields , input_fields=None)

processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:
... LOCK (triple.source, triple.target)
... (source, edge, target) = triple_apply_fn(triple)
... UNLOCK (triple.source, triple.target)
... END PARALLEL FOR

• No guarantees on order of execution
• Updating (src,edge,dst) violates immutability

• triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src',edge',dst')
use return values to build a new graph

Michal Valko – Graphs in Machine Learning 7/1

The GraphLab abstraction

triple_apply(triple_apply_fn , mutated_fields , input_fields=None)

processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:
... LOCK (triple.source, triple.target)
... (source, edge, target) = triple_apply_fn(triple)
... UNLOCK (triple.source, triple.target)
... END PARALLEL FOR

• No guarantees on order of execution
• Updating (src,edge,dst) violates immutability
• triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src',edge',dst')
use return values to build a new graph

Michal Valko – Graphs in Machine Learning 7/1

The GraphLab abstraction

triple_apply(triple_apply_fn , mutated_fields , input_fields=None)

processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:
... LOCK (triple.source, triple.target)
... (source, edge, target) = triple_apply_fn(triple)
... UNLOCK (triple.source, triple.target)
... END PARALLEL FOR

• No guarantees on order of execution
• Updating (src,edge,dst) violates immutability
• triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src',edge',dst')

use return values to build a new graph

Michal Valko – Graphs in Machine Learning 7/1

The GraphLab abstraction

triple_apply(triple_apply_fn , mutated_fields , input_fields=None)

processes all edges asyncronously and in parallel
>>> PARALLEL FOR (source, edge, target) AS triple in G:
... LOCK (triple.source, triple.target)
... (source, edge, target) = triple_apply_fn(triple)
... UNLOCK (triple.source, triple.target)
... END PARALLEL FOR

• No guarantees on order of execution
• Updating (src,edge,dst) violates immutability
• triple_apply_fn receives a copy of (src,edge,dst)

returns an updated (src',edge',dst')
use return values to build a new graph

Michal Valko – Graphs in Machine Learning 7/1

The GraphLab abstraction

triple_apply_fn is a pure function

Function in the mathematical sense, same input gives same output.
1 def triple_apply_fn(src, edge, dst):
2 #can only access data stored in src, edge, and dst,
3 #three dictionaries containing a copy of the
4 #fields indicated in mutated_fields
5 f = dst['f']
6
7 #inputs are copies , this does not change original edge
8 edge['weight'] = g(f)
9

10 return ({'f': dst['f']}, edge, dst)

Michal Valko – Graphs in Machine Learning 8/1

The GraphLab abstraction

An example, computing degree of nodes

1 def degree_count_fn (src, edge, dst):
2 src['degree'] += 1
3 dst['degree'] += 1
4 return (src, edge, dst)
5
6 G_count = G.triple_apply(degree_count_fn , 'degree')

Michal Valko – Graphs in Machine Learning 9/1

The GraphLab abstraction
Slightly more complicated example, suboptimal pagerank

1 #assume each node in G has a field 'degree' and 'pagerank'
2 #initialize 'pagerank' = 1/n for all nodes
3
4 def weight_count_fn (src, edge, dst):
5 dst['degree'] += edge['weight']
6 return (src, edge, dst)
7
8 def pagerank_step_fn (src, edge, dst):
9 dst['pagerank'] += (edge['weight']*src['pagerank']

10 /dst['degree'])
11 return (src, edge, dst)
12
13 G_pagerank = G.triple_apply(weight_count_fn , 'degree')
14
15 while not converged(G_pagerank):
16 G_pagerank = G_pagerank.triple_apply(
17 pagerank_step_fn , 'pagerank')

How many iterations to convergence?

Michal Valko – Graphs in Machine Learning 10/1

The GraphLab abstraction
Slightly more complicated example, suboptimal pagerank

1 #assume each node in G has a field 'degree' and 'pagerank'
2 #initialize 'pagerank' = 1/n for all nodes
3
4 def weight_count_fn (src, edge, dst):
5 dst['degree'] += edge['weight']
6 return (src, edge, dst)
7
8 def pagerank_step_fn (src, edge, dst):
9 dst['pagerank'] += (edge['weight']*src['pagerank']

10 /dst['degree'])
11 return (src, edge, dst)
12
13 G_pagerank = G.triple_apply(weight_count_fn , 'degree')
14
15 while not converged(G_pagerank):
16 G_pagerank = G_pagerank.triple_apply(
17 pagerank_step_fn , 'pagerank')

How many iterations to convergence?

Michal Valko – Graphs in Machine Learning 10/1

Bibliography I

Michal Valko – Graphs in Machine Learning 11/1

Michal Valko
michal.valko@inria.fr

Inria & ENS Paris-Saclay, MVA

https://misovalko.github.io/mva-ml-graphs.html

https://misovalko.github.io/mva-ml-graphs.html

