Graphs in Machine Learning
GraphlLab Abstraction

Immutable Graphs and Functional Programmiing

Michal Valko
Inria & ENS Paris-Saclay, MVA

rtially based on material by: Rob Fergus, Nikhil Srivasta
outis, Joshua Batson, Daniel Spielman

The GraphLab abstraction

Edge Data

Vertex Data

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

In [1]
In [2]
In [3]
In [4]
In [5]
out[5]

import sframe

edges = sframe.SFrame.read csv('/media/sf share/td3 example edges.csv')

vertices = sframe.SFrame.read csv('/media/sf share/td3 example vertices.csv')

G = sframe.SGraph(edges= edges, vertices=vertices, src field='src',6 dst field='dst')

G

SGraph({'num edges': 26, 'num vertices': 9})
Vertex Fields:['_ _id', 'f']
Edge Fields:[' src id', ' dst id', 'weight'

Graphs in Machine Learni

The GraphLab abstraction

Under the hood: tabular representation

Columns:

__id int

f float
Rows: 9
Data
Fommm e T +
I __id | £ |
Fommm T +
| 5 | 0.51 |
I 7 10.82|
10	0.08
2	0.82
6	0.85
I 9	0.83
I 3	0.18
1	0.35
4	0.36
Fommm +mm +

[9 rows x 2 columns]

Graphs in Machine Learnin

Columns:
__src_id int
__dst_id int
weight float

Rows: 26

Data:

__src_id	__dst_id	weight
7	5	0.13185
5	7	0.13185
7	7	0.026779
10	7	0.57121
7	10	0.57121
10	2	0.94047
7	6	0.64528
5	3	0.93374
10	3	0.31713
B	1	0.57796

[26 rows x 3 columns]
Note: Only the head of the SFrame is printed.

The GraphLab abstraction

In [1]: import sframe
In [2]: G = sframe.SGraph()

In [3]: G

Out[3]: SGraph({'num edges': @, 'num vertices': 0})
Vertex Fields:['__id']
Edge Fields:[' src id', ' dst id']

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

In [1]: import sframe
In [2]: G = sframe.SGraph()

In [3]: G

Out[3]: SGraph({'num edges': @, 'num vertices': 0})
Vertex Fields:['__id']
Edge Fields:[' src id', ' dst id']

In [4]: G.add_edges(sframe.Edge(1,2))
Out[4]: SGraph({'num_edges': 1, 'num vertices': 2})

Vertex Fields:[' id']
Edge Fields:[' src id', ' dst id']

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

In [1]:

In [2]:

In [3]:
Out[3]:

In [4]:
Out[4]:

In [5]:
Qut[5]:

import sframe
G = sframe.SGraph()

G

SGraph({'num edges': 0, 'num vertices':

Vertex Fields:['__id']
Edge Fields:[' src id', ' dst id']

G.add_edges(sframe.Edge(1,2))

SGraph({'num_edges': 1, 'num vertices':

Vertex Fields:[' id']
Edge Fields:[' src id', ' dst id']

G

SGraph({'num _edges': 0, 'num vertices':

Vertex Fields:[' id'l]
Edge Fields:[' src id', ' dst id']

Michal Valko — Graphs in Machine Learning

0})

2})

0})

The GraphLab abstraction

= The graph is immutable. why?

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

= The graph is immutable. why?

= All computations are executed asyncronously

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

= The graph is immutable. why?

= All computations are executed asyncronously

L, We do not know the order of execution

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

= The graph is immutable. why?

= All computations are executed asyncronously

L, We do not know the order of execution
We do not even know where the node is stored
what data can we access?

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

= The graph is immutable. why?

= All computations are executed asyncronously

L, We do not know the order of execution
We do not even know where the node is stored
what data can we access?

= The data is stored in the graph itself

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

= The graph is immutable. why?

= All computations are executed asyncronously

L, We do not know the order of execution
We do not even know where the node is stored
what data can we access?
= The data is stored in the graph itself
Ls only access local data

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

The graph is immutable. why?

All computations are executed asyncronously

L, We do not know the order of execution
We do not even know where the node is stored
what data can we access?
= The data is stored in the graph itself
Ls only access local data

Functional programming approach

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

‘triple_apply(triple_apply_fn, mutated_fields, input_fields=None)

processes all edges asyncronously and in parallel

>>> PARALLEL FOR (source, edge, target) AS triple in G:
LOCK (triple.source, triple.target)
(source, edge, target) = triple_apply_fn(triple)
UNLOCK (triple.source, triple.target)
END PARALLEL FOR

= No guarantees on order of execution

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

‘triple_apply(triple_apply_fn, mutated_fields, input_fields=None)

processes all edges asyncronously and in parallel

>>> PARALLEL FOR (source, edge, target) AS triple in G:
LOCK (triple.source, triple.target)
(source, edge, target) = triple_apply_fn(triple)
UNLOCK (triple.source, triple.target)
END PARALLEL FOR

= No guarantees on order of execution

= Updating (src,edge,dst) violates immutability

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

‘triple_apply(triple_apply_fn, mutated_fields, input_fields=None)

processes all edges asyncronously and in parallel

>>> PARALLEL FOR (source, edge, target) AS triple in G:
LOCK (triple.source, triple.target)
(source, edge, target) = triple_apply_fn(triple)
UNLOCK (triple.source, triple.target)
END PARALLEL FOR

= No guarantees on order of execution

= Updating (src,edge,dst) violates immutability
= triple_apply_fn receives a copy of (src,edge,dst)

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

‘triple_apply(triple_apply_fn, mutated_fields, input_fields=None)

processes all edges asyncronously and in parallel

>>> PARALLEL FOR (source, edge, target) AS triple in G:
LOCK (triple.source, triple.target)
(source, edge, target) = triple_apply_fn(triple)
UNLOCK (triple.source, triple.target)
END PARALLEL FOR

= No guarantees on order of execution

= Updating (src,edge,dst) violates immutability
= triple_apply_fn receives a copy of (src,edge,dst)
L, returns an updated (src',edge',dst')

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

‘triple_apply(triple_apply_fn, mutated_fields, input_fields=None)

processes all edges asyncronously and in parallel

>>> PARALLEL FOR (source, edge, target) AS triple in G:
LOCK (triple.source, triple.target)
(source, edge, target) = triple_apply_fn(triple)
UNLOCK (triple.source, triple.target)
END PARALLEL FOR

= No guarantees on order of execution

= Updating (src,edge,dst) violates immutability
= triple_apply_fn receives a copy of (src,edge,dst)

L, returns an updated (src',edge',dst')
use return values to build a new graph

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

triple_apply_fn is a pure function

Function in the mathematical sense, same input gives same output.

1| def triple_apply_fn(src, edge, dst):

2 #can only access data stored in src, edge, and dst,
3 #three dictionaries containing a copy of the

4 #fields indicated in mutated_fields

5 f = dst['f']
6
7
8
9

#inputs are copies, this does not change original edge
edge['weight'] = g(£f)

10 return ({'f': dst['f']}, edge, dst)

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

An example, computing degree of nodes

1| def degree_count_fn (src, edge, dst):
2 src['degree'] += 1

3 dst['degree'] += 1

4 return (src, edge, dst)

6| G_count = G.triple_apply(degree_count_fn, 'degree')

Michal Valko — Graphs in Machine Learning

The GraphLab abstraction

Slightly more complicated example, suboptimal pagerank

1| #assume each node in G has a field 'degree' and 'pagerank'
2| #initialize 'pagerank' = 1/n for all nodes

3

4| def weight_count_fn (src, edge, dst):

5 dst['degree'] += edgel'weight']

6 return (src, edge, dst)

7

8| def pagerank_step_fn (src, edge, dst):

9 dst['pagerank'] += (edge['weight']*src['pagerank']
10 /dst['degree'])
11 return (src, edge, dst)

12

13| G_pagerank = G.triple_apply(weight_count_fn, 'degree')
14

15| while not converged(G_pagerank):

16 G_pagerank = G_pagerank.triple_apply(

17 pagerank_step_fn, 'pagerank')

Michal Valko — Graphs in Machine Learning 10/1

The GraphLab abstraction

Slightly more complicated example, suboptimal pagerank

#assume each node in G has a field 'degree'

#initialize 'pagerank' = 1/n for all nodes

and 'pagerank'

def weight_count_fn (src, edge, dst):
dst['degree'] += edgel'weight']
return (src, edge, dst)

def pagerank_step_fn (src, edge, dst):
dst['pagerank'] += (edge['weight']*src['pagerank']
/dst['degree'])

© ® N O A W N

=
= o

return (src, edge, dst)

— e
w N

G_pagerank = G.triple_apply(weight_count_fn, 'degree')

=
S

while not converged(G_pagerank):
G_pagerank = G_pagerank.triple_apply(
pagerank_step_fn, 'pagerank')

=
~N o

How many iterations to convergence?

Michal Valko — Graphs in Machine Learning 10/1

Bibliography |

Michal Valko — Graphs in Machine Learning 11/1

“Valko

..Vélko©inria.fr
Inria & ENS Paris-Saclay, MVA

https://misovalko.github.io/mva-ml-graphss

https://misovalko.github.io/mva-ml-graphs.html

