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Transductive Generalization Bounds

True risk vs. empirical risk

RP(f ) =
1

N
∑

i
(fi − yi)

2

R̂P(f ) =
1

nl

∑
i∈l

(fi − yi)
2

We look for transductive bounds in the form

RP(f ) ≤ R̂P(f ) + errors
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Transductive Generalization Bounds
Bounding transductive error using stability analysis

http://www.cs.nyu.edu/~mohri/pub/str.pdf

How to bound (fi − yi)
2?

We bound (`?i − yi)
2 with soft HFS (hard HFS is difficult):

`? = min
`∈RN

(`− y)TC(`− y) + `TQ`

Closed form solution

`? =
(
C−1Q + I

)−1 y
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Transductive Generalization Bounds
Consider two datasets differing in exactly one labeled point.

`?1 = (C−1
1 Q + I)−1y1 and `?2 = (C−1

2 Q + I)−1y2

What is the maximal difference β ≥ ‖`?2 − `?1‖∞in the solutions?

By the generalization bound of Belkin Belkin et al., 2004,
w.p.1− δ

http://web.cse.ohio-state.edu/~mbelkin/papers/RSS_COLT_04.pdf

RP(`
?) ≤ R̂P(`

?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

.
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Transductive Generalization Bounds
Bounding transductive error

‖`?2 − `?1‖∞ ≤ β ≤ ‖y2 − y1‖2
λm(Q)
λM(C1)

+ 1
+

λM(Q)‖C−1
1 − C−1

2 ‖2 · ‖y1‖2(
λm(Q)
λM(C2)

+ 1
)(

λm(Q)
λM(C1)

+ 1
)

Now, let us plug in the values for our problem.

Remember that λm(Q) = λm(L)+γg and λM(Q) = λM(L)+γg .
Take cl = 1 and cl > cu. We have |yi | ≤ 1 and |`?i | ≤ 1.

β ≤ 2

[ √
2

γg + 1
+

√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]

This algorithm is β-stable!
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Transductive Generalization Bounds
Bounding transductive error

RP(`
?) ≤ R̂P(`

?) + β +

√
2 ln(2/δ)

nl
(nlβ + 4)︸ ︷︷ ︸

transductive error ∆T (β,nl ,δ)

β ≤ 2

[ √
2

γg + 1
+
√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]
Does the bound say anything useful?

1) The error is controlled.

2) Practical when error ∆T (β, nl , δ) decreases at rate O(n− 1
2

l ).
Achieved when β=O(1/nl). That is, γg =Ω(n

3
2
l ).

We have an idea how to set γg !
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