

Graphs in Machine Learning

SSL Learnability

When Does Graph-Based SSL Provably Help?

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Branislav Kveton,
Mikhail Belkin, Jerry Zhu

SSL with Graphs: What is behind it?

Why and when it helps?

SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when **manifold** SSL is provably helpful?

SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when **manifold** SSL is provably helpful?

Say \mathcal{X} is supported on manifold \mathcal{M} . Compare two cases:

- SL: does not know about \mathcal{M} and only knows (\mathbf{x}_i, y_i)

SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when **manifold** SSL is provably helpful?

Say \mathcal{X} is supported on manifold \mathcal{M} . Compare two cases:

- SL: does not know about \mathcal{M} and only knows (\mathbf{x}_i, y_i)
- SSL: perfect knowledge of \mathcal{M}

SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when **manifold** SSL is provably helpful?

Say \mathcal{X} is supported on manifold \mathcal{M} . Compare two cases:

- SL: does not know about \mathcal{M} and only knows (\mathbf{x}_i, y_i)
- SSL: perfect knowledge of \mathcal{M}

SSL with Graphs: What is behind it?

Why and when it helps?

Can we guarantee benefit of SSL over SL?

Are there cases when **manifold** SSL is provably helpful?

Say \mathcal{X} is supported on manifold \mathcal{M} . Compare two cases:

- SL: does not know about \mathcal{M} and only knows (\mathbf{x}_i, y_i)
- SSL: perfect knowledge of $\mathcal{M} \equiv$ humongous amounts of \mathbf{x}_i

<http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf>

SSL with Graphs: What is behind it?

Set of learning problems - collections \mathcal{P} of probability distributions:

\mathcal{P}

SSL with Graphs: What is behind it?

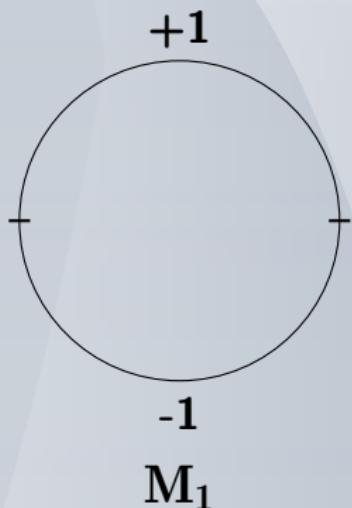
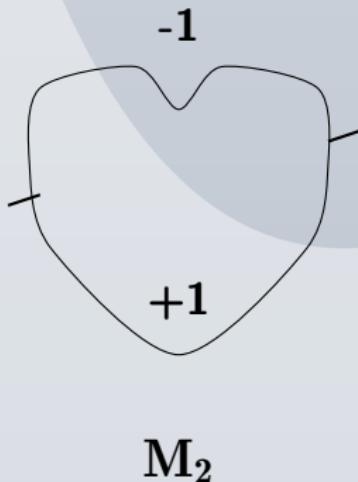
Set of learning problems - collections \mathcal{P} of probability distributions:

$$\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$$

SSL with Graphs: What is behind it?

Set of learning problems - collections \mathcal{P} of probability distributions:

$$\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \cup_{\mathcal{M}} \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$$



SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

Algorithm A and **labeled examples** $\bar{z} = \{z_i\}_{i=1}^{n_l} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_l}$

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

Algorithm A and labeled examples $\bar{z} = \{z_i\}_{i=1}^{n_l} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_l}$

Minimax rate

$$R(n_l, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} \left[\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})} \right]$$

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

Algorithm A and labeled examples $\bar{z} = \{z_i\}_{i=1}^{n_l} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_l}$

Minimax rate

$$R(n_l, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} \left[\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})} \right]$$

Since $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

Algorithm A and labeled examples $\bar{z} = \{z_i\}_{i=1}^{n_l} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_l}$

Minimax rate

$$R(n_l, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathcal{X}})}]$$

Since $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$

$$R(n_l, \mathcal{P}) = \inf_A \sup_{\mathcal{M}} \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathcal{X}})}]$$

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

Algorithm A and labeled examples $\bar{z} = \{z_i\}_{i=1}^{n_l} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_l}$

Minimax rate

$$R(n_l, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

Since $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$

$$R(n_l, \mathcal{P}) = \inf_A \sup_{\mathcal{M}} \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

(SSL) When A is allowed to know \mathcal{M}

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

Algorithm A and labeled examples $\bar{z} = \{z_i\}_{i=1}^{n_l} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_l}$

Minimax rate

$$R(n_l, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

Since $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$

$$R(n_l, \mathcal{P}) = \inf_A \sup_{\mathcal{M}} \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

(SSL) When A is allowed to know \mathcal{M}

$$Q(n_l, \mathcal{P}) = \sup_{\mathcal{M}} \inf_A \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

SSL with Graphs: What is behind it?

Set of problems $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}} = \{p \in \mathcal{P} | p_{\mathcal{X}} \text{ is uniform on } \mathcal{M}\}$

Regression function $m_p = \mathbb{E}[y | x]$ when $x \in \mathcal{M}$

Algorithm A and labeled examples $\bar{z} = \{z_i\}_{i=1}^{n_l} = \{(\mathbf{x}_i, y_i)\}_{i=1}^{n_l}$

Minimax rate

$$R(n_l, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

Since $\mathcal{P} = \cup_{\mathcal{M}} \mathcal{P}_{\mathcal{M}}$

$$R(n_l, \mathcal{P}) = \inf_A \sup_{\mathcal{M}} \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

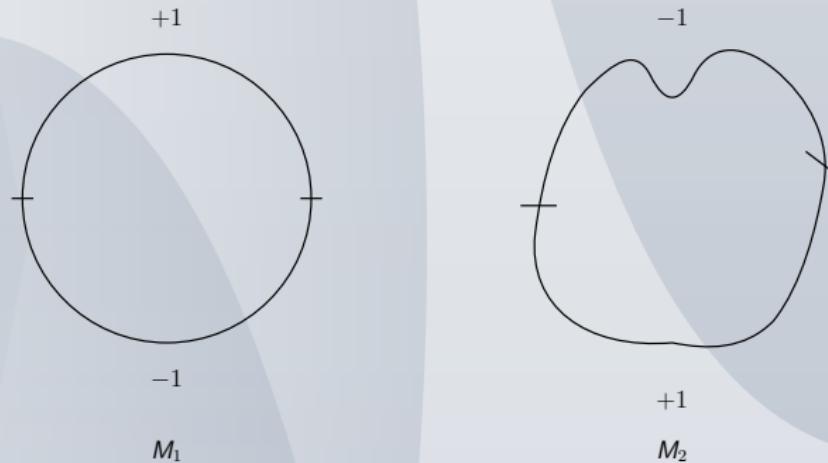
(SSL) When A is allowed to know \mathcal{M}

$$Q(n_l, \mathcal{P}) = \sup_{\mathcal{M}} \inf_A \sup_{p \in \mathcal{P}_{\mathcal{M}}} \mathbb{E}_{\bar{z}} [\|A(\bar{z}) - m_p\|_{L^2(p_{\mathbf{X}})}]$$

In which cases there is a gap between $Q(n_l, \mathcal{P})$ and $R(n_l, \mathcal{P})$?

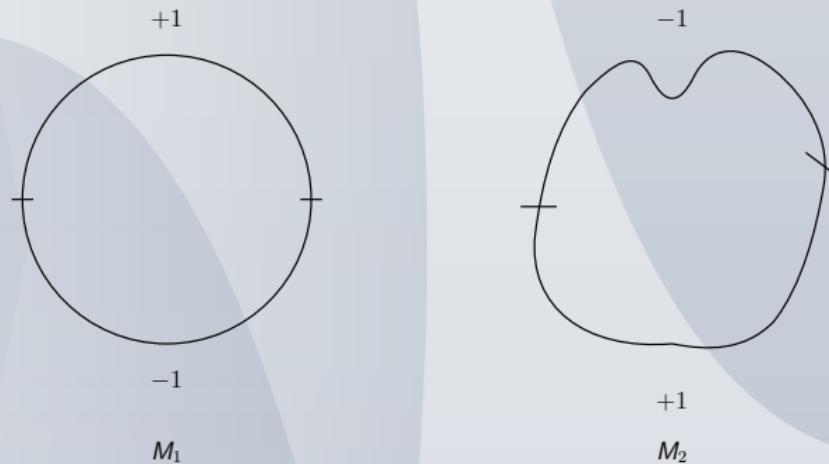
SSL with Graphs: What is behind it?

Hypothesis space \mathcal{H} : half of the circle as $+1$ and the rest as -1



SSL with Graphs: What is behind it?

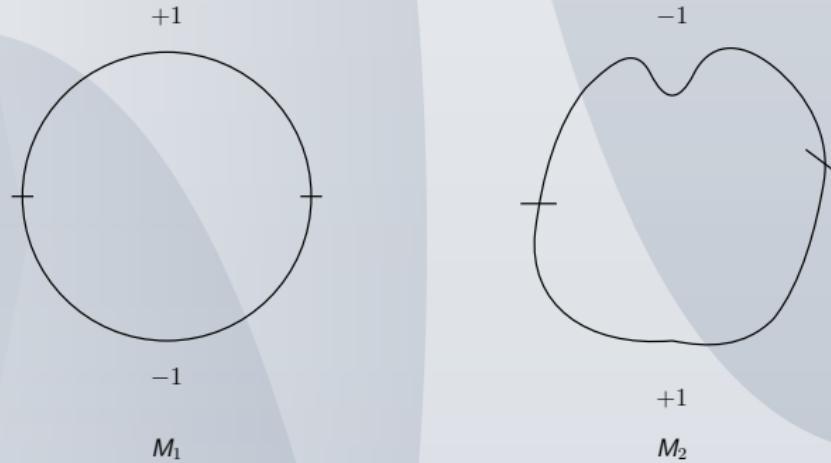
Hypothesis space \mathcal{H} : half of the circle as $+1$ and the rest as -1



Case 1: \mathcal{M} is known to the learner ($\mathcal{H}_{\mathcal{M}}$)

SSL with Graphs: What is behind it?

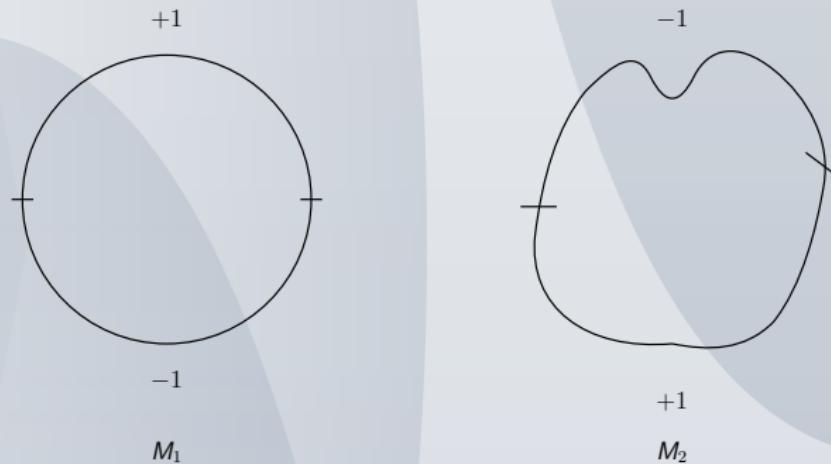
Hypothesis space \mathcal{H} : half of the circle as $+1$ and the rest as -1



Case 1: \mathcal{M} is known to the learner ($\mathcal{H}_{\mathcal{M}}$)
What is a VC dimension of $\mathcal{H}_{\mathcal{M}}$?

SSL with Graphs: What is behind it?

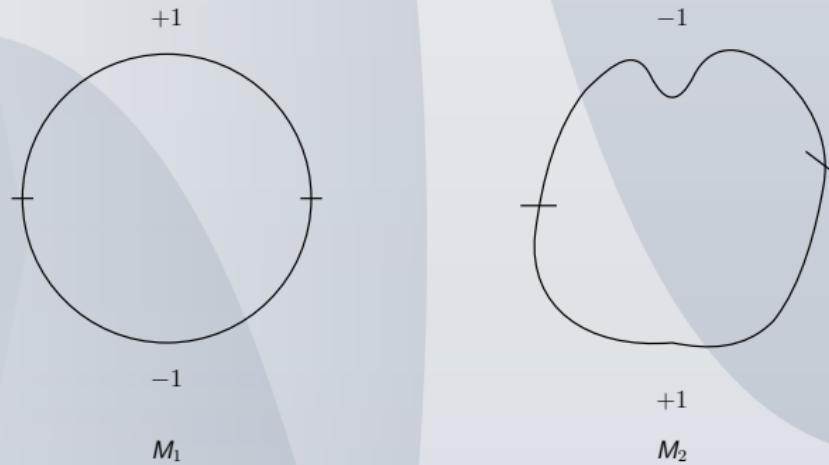
Hypothesis space \mathcal{H} : half of the circle as $+1$ and the rest as -1



Case 1: \mathcal{M} is known to the learner ($\mathcal{H}_{\mathcal{M}}$)
What is a VC dimension of $\mathcal{H}_{\mathcal{M}}$? 2

SSL with Graphs: What is behind it?

Hypothesis space \mathcal{H} : half of the circle as $+1$ and the rest as -1



Case 1: \mathcal{M} is known to the learner ($\mathcal{H}_{\mathcal{M}}$)
What is a VC dimension of $\mathcal{H}_{\mathcal{M}}$? 2

SSL with Graphs: What is behind it?

Case 2: \mathcal{M} is **unknown** to the learner

SSL with Graphs: What is behind it?

Case 2: \mathcal{M} is **unknown** to the learner

$$R(n_l, \mathcal{P}) = \inf_{\mathcal{A}} \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} \left[\|A(\bar{z}) - m_p\|_{L^2(p_X)} \right] =$$

SSL with Graphs: What is behind it?

Case 2: \mathcal{M} is **unknown** to the learner

$$R(n_l, \mathcal{P}) = \inf_{\mathcal{A}} \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} \left[\| \mathcal{A}(\bar{z}) - m_p \|_{L^2(p_X)} \right] = \Omega(1)$$

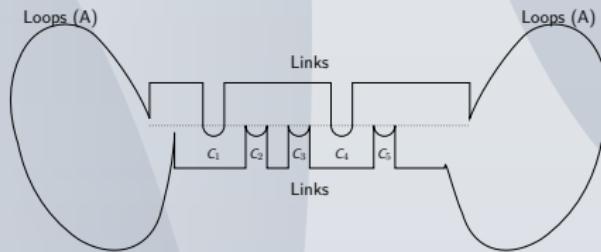
SSL with Graphs: What is behind it?

Case 2: \mathcal{M} is **unknown** to the learner

$$R(n_I, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} \left[\|A(\bar{z}) - m_p\|_{L^2(p_X)} \right] = \Omega(1)$$

We consider 2^d manifolds of the form

$$\mathcal{M} = \text{Loops} \cup \text{Links} \cup C \text{ where } C = \cup_{i=1}^d C_i$$



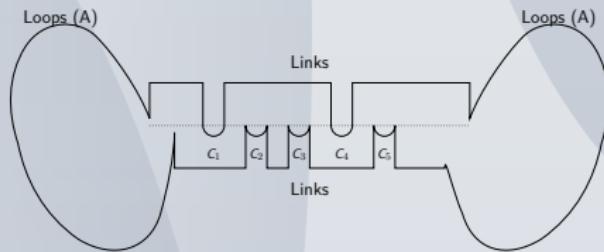
SSL with Graphs: What is behind it?

Case 2: \mathcal{M} is **unknown** to the learner

$$R(n_I, \mathcal{P}) = \inf_A \sup_{p \in \mathcal{P}} \mathbb{E}_{\bar{z}} \left[\|A(\bar{z}) - m_p\|_{L^2(p_X)} \right] = \Omega(1)$$

We consider 2^d manifolds of the form

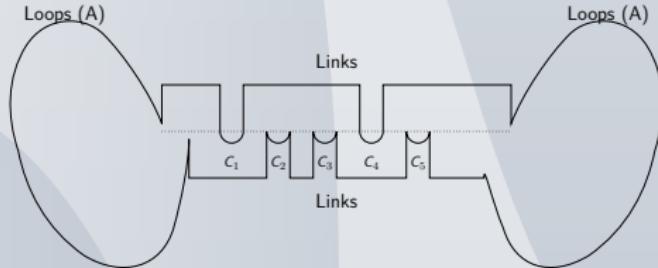
$$\mathcal{M} = \text{Loops} \cup \text{Links} \cup C \text{ where } C = \cup_{i=1}^d C_i$$



Main idea: d segments in C , $d - 1$ with no data, 2^d possible choices for labels, which helps us to lower bound

$$\|A(\bar{z}) - m_p\|_{L^2(p_X)}$$

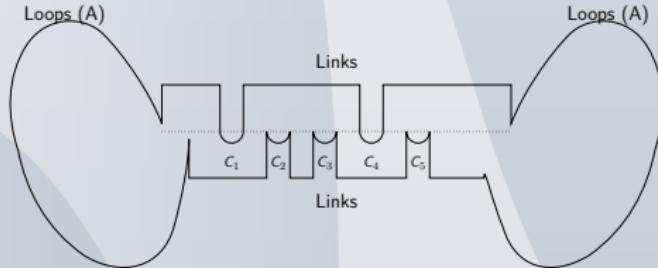
SSL with Graphs: What is behind it?



Knowing the manifold helps

- C_1 and C_4 are close

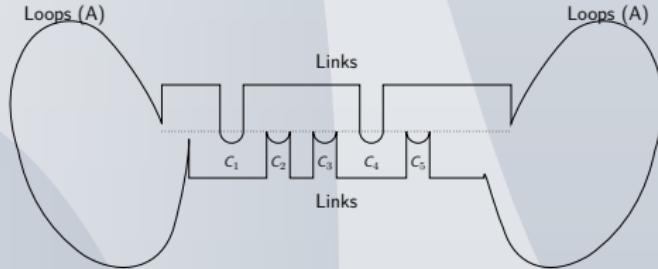
SSL with Graphs: What is behind it?



Knowing the manifold helps

- C_1 and C_4 are close
- C_1 and C_3 are far

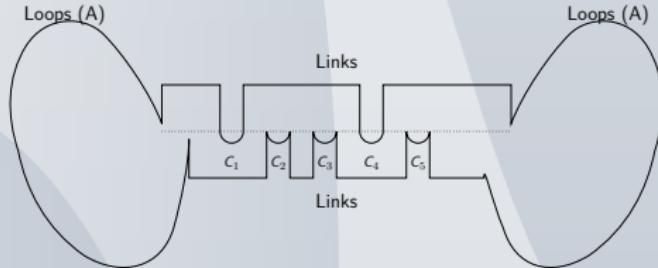
SSL with Graphs: What is behind it?



Knowing the manifold helps

- C_1 and C_4 are close
- C_1 and C_3 are far
- we also need: **target function varies smoothly**

SSL with Graphs: What is behind it?



Knowing the manifold helps

- C_1 and C_4 are close
- C_1 and C_3 are far
- we also need: **target function varies smoothly**
- altogether: **closeness on manifold \rightarrow similarity in labels**

SSL with Graphs: What is behind it?

What does it mean to **know M** ?

SSL with Graphs: What is behind it?

What does it mean to **know** \mathcal{M} ?

Different degrees of knowing \mathcal{M}

- set membership oracle: $x \stackrel{?}{\in} \mathcal{M}$
- approximate oracle
- knowing the harmonic functions on \mathcal{M}
- knowing the Laplacian $\mathcal{L}_{\mathcal{M}}$
- knowing eigenvalues and eigenfunctions
- topological invariants, e.g., dimension
- metric information: geodesic distance

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

`https://misovalko.github.io/mva-ml-graphs.html`