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SSL with Graphs: What is behind it?

Why and when it helps?
Can we guarantee benefit of SSL over SL?
Are there cases when manifold SSL is provably helpful?

Say X is supported on manifold M. Compare two cases:
= SL: does not know about M and only knows (x;, y;)

= SSL: perfect knowledge of M = humongous amounts of x;

http://people.cs.uchicago.edu/~niyogi/papersps/ssminimax2.pdf
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Regression function m, = E [y |x] when x € M

Algorithm A and labeled examples z = {z;}!", = {(xi,yi)} .,
Minimax rate
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Set of problems P = Ur(Prq = {p € P|px is uniform on M}
Regression function m, = E [y |x] when x € M

Algorithm A and labeled examples z = {z;}!", = {(xi,yi)} .,
Minimax rate

R(n, P) = inf sup E; [[|A(2) — mpl|12(py)]
A peP

Since P = Up Pt
R(n;,P) = inf sup Ez [||A(Z) — mp|li2(pg)]

PEPM
(SSL) When A is allowed to know M
Q(m,P) = inf sup E; [[|A(2) = mp|li2(py)]
PEP M
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SSL with Graphs: What is behind it?

Set of problems P = Ur(Prq = {p € P|px is uniform on M}
Regression function m, = E [y |x] when x € M

Algorithm A and labeled examples z = {z;}!", = {(xi,yi)} .,
Minimax rate

R(n, P) = inf sup E; [[|A(2) — mpl|12(py)]
A peP

Since P = Up Pt
R(n;,P) = inf sup Ez [||A(Z) — mp|li2(pg)]

PEPM
(SSL) When A is allowed to know M
Q(m,P) = inf sup E; [[|A(2) = mp|li2(py)]
PEP M

In which cases there is a gap between Q(n;,P) and R(n;, P)?
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Case 2: M is unknown to the learner

R(n, P) = irAlfsup Es [HA(Z) = mP||L2(Px)] =
pEP
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SSL with Graphs: What is behind it?

Case 2: M is unknown to the learner

R(n, P) = infsup E; [IAZ) = mpll2(pp)] = 2 (1)
pEP

We consider 29 manifolds of the form

M = Loops U Links U C where C = U¢_, G
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SSL with Graphs: What is behind it?

Case 2: M is unknown to the learner

R(m, P) = inf sup E; [[|A(2) — mpll12(a)] = 2(1)
pEP

We consider 29 manifolds of the form

M = Loops U Links U C where C = UY_, G;

Main idea: d segments in C, d — | with no data, 2/ possible
choices for labels, which helps us to lower bound

1A(2) = mp |l 12(py)
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= (; and Cy are close
= (; and C3 are far

= we also need: target function varies smoothly

Michal Valko — Graphs in Machine Learning



SSL with Graphs: What is behind it?

Knowing the manifold helps

= (; and Cy are close
= (; and C3 are far
= we also need: target function varies smoothly

= altogether: closeness on manifold — similarity in labels
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SSL with Graphs: What is behind it?

What does it mean to know M?
Different degrees of knowing M

= set membership oracle: x é M

= approximate oracle

= knowing the harmonic functions on M
= knowing the Laplacian £

= knowing eigenvalues and eigenfunctions
= topological invariants, e.g., dimension

= metric information: geodesic distance
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