

Graphs in Machine Learning

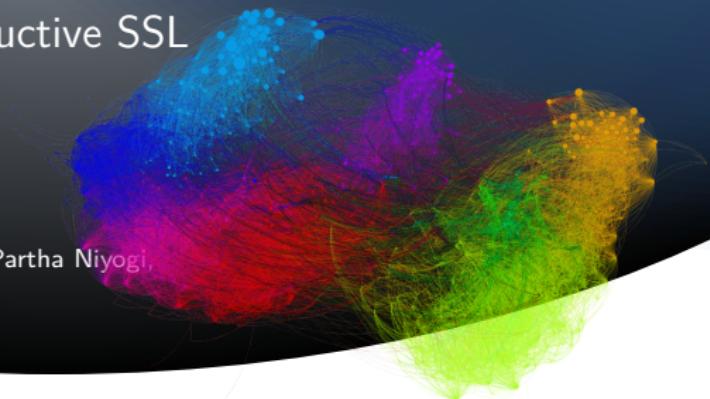
Inductive Generalization Bounds

Theoretical Guarantees for Inductive SSL

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Mikhail Belkin, Partha Niyogi,
Olivier Chapelle, Bernhard Schölkopf



Inductive Generalization Bounds

We may want to bound the **risk**

$$R_P(f) = \mathbb{E}_{P(\mathbf{x})} [\mathcal{L}(f(\mathbf{x}), y(\mathbf{x}))]$$

Inductive Generalization Bounds

We may want to bound the **risk**

$$R_P(f) = \mathbb{E}_{P(\mathbf{x})} [\mathcal{L}(f(\mathbf{x}), y(\mathbf{x}))]$$

for some **loss**, e.g., 0/1 loss

$$\mathcal{L}(y', y) = \mathbb{1}\{\text{sgn}(y') \neq y\}$$

Inductive Generalization Bounds

We may want to bound the **risk**

$$R_P(f) = \mathbb{E}_{P(\mathbf{x})} [\mathcal{L}(f(\mathbf{x}), y(\mathbf{x}))]$$

for some **loss**, e.g., 0/1 loss

$$\mathcal{L}(y', y) = \mathbb{1}\{\text{sgn}(y') \neq y\}$$

$$R_P(f) \leq \hat{R}_P(f) + \text{error terms}$$

Inductive Generalization Bounds

Using classical SLT tools (Equations 3.15 and 3.24
vapnik1995nature), with probability $1 - \eta$

$$R_P(f) \leq \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) + \Delta_I(h, N, \eta).$$

Inductive Generalization Bounds

Using classical SLT tools (Equations 3.15 and 3.24
vapnik1995nature), with probability $1 - \eta$

$$R_P(f) \leq \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) + \Delta_I(h, N, \eta).$$

$N \equiv$ number of samples

Inductive Generalization Bounds

Using classical SLT tools (Equations 3.15 and 3.24
vapnik1995nature), with probability $1 - \eta$

$$R_P(f) \leq \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) + \Delta_I(h, N, \eta).$$

N \equiv number of samples , h \equiv VC dimension of the class

Inductive Generalization Bounds

Using classical SLT tools (Equations 3.15 and 3.24
vapnik1995nature), with probability $1 - \eta$

$$R_P(f) \leq \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) + \Delta_I(h, N, \eta).$$

N \equiv number of samples , h \equiv VC dimension of the class

$$\Delta_I(h, N, \eta) = \sqrt{\frac{h(\ln(2N/h) + 1) - \ln(\eta/4)}{N}}$$

Inductive Generalization Bounds

Using classical SLT tools (Equations 3.15 and 3.24
vapnik1995nature), with probability $1 - \eta$

$$R_P(f) \leq \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) + \Delta_I(h, N, \eta).$$

$N \equiv$ number of samples , $h \equiv$ VC dimension of the class

$$\Delta_I(h, N, \eta) = \sqrt{\frac{h(\ln(2N/h) + 1) - \ln(\eta/4)}{N}}$$

How to bound $\mathcal{L}(f(\mathbf{x}_i), y_i)$?

Inductive Generalization Bounds

For any $y_i \in \{-1, 1\}$ and ℓ_i^*

$$\frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) \leq \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) + \frac{1}{N} \sum_i (\ell_i^* - y_i)^2$$

Inductive Generalization Bounds

For any $y_i \in \{-1, 1\}$ and ℓ_i^*

$$\begin{aligned} \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), y_i) &\leq \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) + \frac{1}{N} \sum_i (\ell_i^* - y_i)^2 \\ &\leq \left(\frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) \right) + \widehat{R}_P(\ell^*) + \Delta_T(\beta, n_I, \delta) \end{aligned}$$

Inductive Generalization Bounds

Combining inductive + transductive error

With probability $1 - (\eta + \delta)$.

$$\begin{aligned} R_P(f) \leq & \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) + \\ & \widehat{R}_P(\ell^*) + \Delta_T(\beta, n_I, \delta) + \Delta_I(h, N, \eta) \end{aligned}$$

Inductive Generalization Bounds

Combining inductive + transductive error

With probability $1 - (\eta + \delta)$.

$$\begin{aligned} R_P(f) \leq & \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) + \\ & \widehat{R}_P(\ell^*) + \Delta_T(\beta, n_I, \delta) + \Delta_I(h, N, \eta) \end{aligned}$$

We need to account for ε . With probability $1 - (\eta + \delta)$.

$$\begin{aligned} R_P(f) \leq & \frac{1}{N} \sum_{i: |\ell_i^*| \geq \varepsilon} \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) + \frac{2\varepsilon n_\varepsilon}{N} + \\ & \widehat{R}_P(\ell^*) + \Delta_T(\beta, n_I, \delta) + \Delta_I(h, N, \eta) \end{aligned}$$

Inductive Generalization Bounds

Combining inductive + transductive error

With probability $1 - (\eta + \delta)$.

$$\begin{aligned} R_P(f) \leq & \frac{1}{N} \sum_i \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) + \\ & \widehat{R}_P(\ell^*) + \Delta_T(\beta, n_I, \delta) + \Delta_I(h, N, \eta) \end{aligned}$$

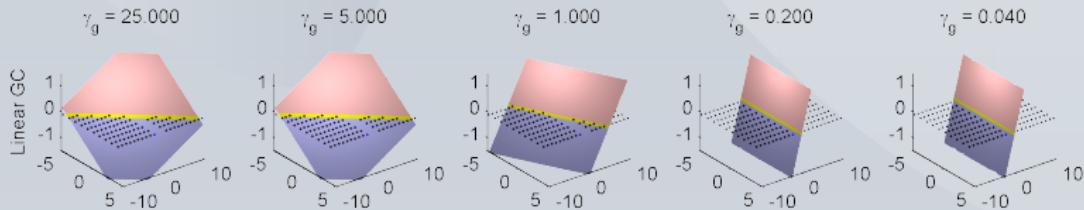
We need to account for ε . With probability $1 - (\eta + \delta)$.

$$\begin{aligned} R_P(f) \leq & \frac{1}{N} \sum_{i: |\ell_i^*| \geq \varepsilon} \mathcal{L}(f(\mathbf{x}_i), \text{sgn}(\ell_i^*)) + \frac{2\varepsilon n_\varepsilon}{N} + \\ & \widehat{R}_P(\ell^*) + \Delta_T(\beta, n_I, \delta) + \Delta_I(h, N, \eta) \end{aligned}$$

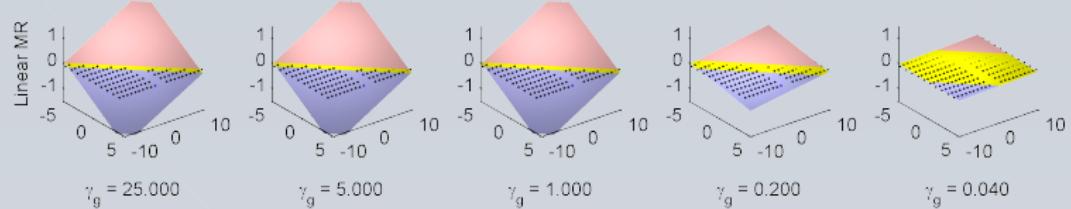
We should have $\varepsilon \leq n_I^{-1/2}!$

SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC for 2D data and **linear** \mathcal{K} works as we want

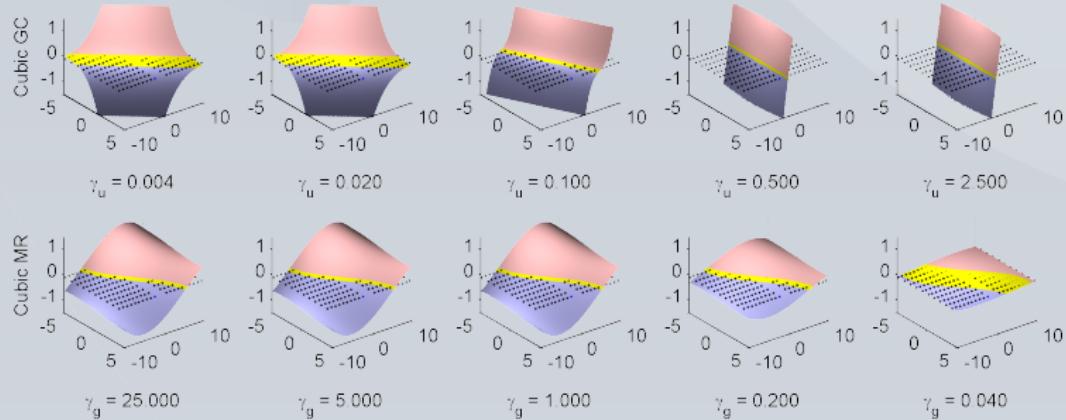


LSVM for 2D data and **linear** \mathcal{K} only changes the slope



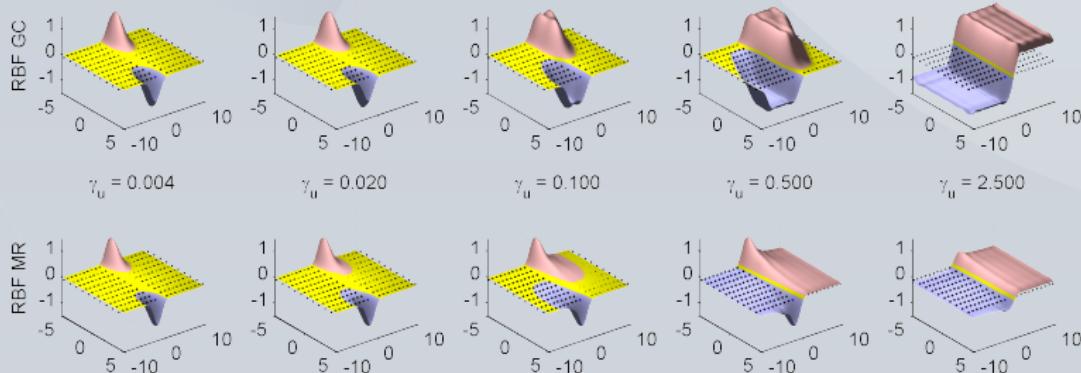
SSL with Graphs: LapSVMs and MM Graph Cuts

LSVM for 2D data and **cubic** \mathcal{K} is also not so good



SSL with Graphs: LapSVMs and MM Graph Cuts

MMGC and LSVM for 2D data and RBF \mathcal{K}



Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>