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Inductive Generalization Bounds

We may want to bound the risk

RP(f ) = EP(x) [L (f (x) , y (x))]

for some loss, e.g., 0/1 loss

L(y ′, y)=1{sgn(y ′) 6=y}

RP(f ) ≤ R̂P(f ) + error terms
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Inductive Generalization Bounds

Using classical SLT tools (Equations 3.15 and 3.24
vapnik1995nature), with probability 1− η

RP(f ) ≤
1

N
∑

i
L(f (xi), yi) + ∆I(h,N, η).

N ≡ number of samples , h ≡ VC dimension of the class

∆I(h,N, η) =

√
h(ln(2N/h) + 1)− ln(η/4)

N

How to bound L(f (xi), yi)?
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Inductive Generalization Bounds

For any yi ∈ {−1, 1} and `?i

1

N
∑

i
L(f (xi), yi) ≤

1

N
∑

i
L(f (xi), sgn(`?i )) +

1

N
∑

i
(`?i − yi)

2

≤

(
1

N
∑

i
L(f (xi), sgn(`?i ))

)
+ R̂P(`

?) + ∆T (β, nl , δ)
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Inductive Generalization Bounds
Combining inductive + transductive error

With probability 1− (η + δ).

RP(f ) ≤ 1

N
∑

i
L(f (xi), sgn(`?i )) +

R̂P(`
?) + ∆T (β, nl , δ) + ∆I(h,N, η)

We need to account for ε. With probability 1− (η + δ).

RP(f ) ≤
1

N
∑

i:
∣∣`?i ∣∣≥ε

L(f (xi), sgn(`?i )) +
2εnε
N +

R̂P(`
?) + ∆T (β, nl , δ) + ∆I(h,N, η)

We should have ε ≤ n−1/2
l !
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SSL with Graphs: LapSVMs and MM Graph
Cuts

MMGC for 2D data and linear K works as we want

LSVM for 2D data and linear K only changes the slope
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SSL with Graphs: LapSVMs and MM Graph
Cuts

LSVM for 2D data and cubic K is also not so good
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SSL with Graphs: LapSVMs and MM Graph
Cuts

MMGC and LSVM for 2D data and RBF K
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