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and  Apax = max
x'x X'x
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What can we say about \;(G) and \;(H)?
1- €)fTLGf§ fTLyf < (1+ €)fTLGf
Eigenvalues are approximated well!

(1= 2)Ai(G) < Ai(H) < (1 +)Ai(G)
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Using matrix ordering notation (1 —¢)Lg <Ly < (1+¢)Lg
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x'x X'x

Amin = Min

What can we say about \;(G) and \;(H)?
1- €)fTLGf§ fTLyf < (1+ €)fTLGf
Eigenvalues are approximated well!

(1= 2)Ai(G) < Ai(H) < (1 +)Ai(G)
=<

Using matrix ordering notation (1 —¢)Lg <Ly < (1+¢)Lg

As a consequence, arg min, ||Lyx — b|| ~ arg min, ||Lgx — b||
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Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral e-sparsifier

Michal Valko — Graphs in Machine Learning 3/12



Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral e-sparsifier
= with only O(nlog(n)/c?) edges

Michal Valko — Graphs in Machine Learning 3/12



Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral e-sparsifier
= with only O(nlog(n)/c?) edges
= in O(mlog?(n)) time and O(nlog(n)/e?) space

Michal Valko — Graphs in Machine Learning 3/12



Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral e-sparsifier
= with only O(nlog(n)/c?) edges
= in O(mlog?(n)) time and O(nlog(n)/e?) space
= a single pass over the data

Michal Valko — Graphs in Machine Learning 3/12



Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given y = f* + ¢ and G compute

min(f—y)"(f —y) + M'Lgf (1)
fern

Michal Valko — Graphs in Machine Learning 4/12



Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given y = f* + ¢ and G compute

min(f—y)"(f —y) + M'Lgf (1)
fern
Preproc Time Space
f=(\Lg+1I)ly 0 O(mlog(n)) O(m)

Michal Valko — Graphs in Machine Learning 4/12



Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given y = f* + ¢ and G compute

min(f —y)"(f—y) + M L¢f
fern

(1)
_ Preproc Time Space
f=(ALg + Ity 0 O(mlog(n)) O(m)
f=(\Ly+D)~'y O(mlog(n)) O(nlog?(n)) O(nlog(n))

Michal Valko — Graphs in Machine Learning 4/12



Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given y = f* + ¢ and G compute

min(f —y)'(f ~y) + A" L¢f (1)
_ Preproc Time Space
f=(ALg + Ity 0 O(mlog(n)) O(m)
f=(\Ly+D)~'y O(mlog(n)) O(nlog?(n)) O(nlog(n))

Large computational improvement
Ly accuracy guarantees! Sadhanala et al., 2016

Michal Valko — Graphs in Machine Learning 4/12



Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given y = f* + ¢ and G compute

min(f —y)'(f ~y) + A" L¢f (1)
_ Preproc Time Space
f=(ALg + Ity 0 O(mlog(n)) O(m)
f=(\Ly+D)~'y O(mlog(n)) O(nlog?(n)) O(nlog(n))

Large computational improvement
Ly accuracy guarantees! Sadhanala et al., 2016

Need to approximate spectrum only up to regularization level A
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Ridge Spectral Graph Sparsifiers in ML

An (e,7)-sparsifier of G is a reweighted subgraph H s.t.

[ (1-—e)Lg—eyI 2Ly < (1+¢)Lg+ 571] (2)
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Ridge Spectral Graph Sparsifiers in ML

Definition
An (e,7)-sparsifier of G is a reweighted subgraph H s.t.

[ (1-—e)Lg—eyI 2Ly < (1+¢)Lg+ 571] (2)

Mixed multiplicative / additive error

= large (i.e. > ~) directions reconstructed accurately

= small (i.e. <) directions uniformly approximated (1)

Adapted from Randomized Linear Algebra (RLA) community
Ly PSD matrix low-rank approx. Alaoui and Mahoney, 2015
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Ridge Spectral Graph Sparsifiers in ML

Definition
An (e,7)-sparsifier of G is a reweighted subgraph H s.t.

[ (1-—e)Lg—eyI 2Ly < (1+¢)Lg+ 571] (2)

Mixed multiplicative / additive error

= large (i.e. > ~) directions reconstructed accurately

= small (i.e. <) directions uniformly approximated (1)

Adapted from Randomized Linear Algebra (RLA) community
Ly PSD matrix low-rank approx. Alaoui and Mahoney, 2015

RLA — Graph: Improve over O(nlog n) exploiting regularization
Graph — RLA: Exploit L¢ structure for fast (e, y)-sparsification
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Spectral Graph Sparsification: Intuition
Let us consider unweighted graphs: w; € {0,1}

LG_ZW,J i=> Lj

ijeE
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Spectral Graph Sparsification: Intuition
Let us consider unweighted graphs: w; € {0,1}
LG—ZWUU—ZLU—Z(S—(S )(8i — ;)" =) beb]
jeE jeE ecE

We look for a subgraph H

Ly = Z sebeb, where s, is a new weight of edge e
ecE

>

https://math.berkeley.edu/~nikhil /
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Spectral Graph Sparsification: Intuition
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- T
Same as, given I = E VeV,
eeE
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We want (1 —¢)Lg <Ly < (1+¢)Lg

Equivalent, given L¢ = Zbebl find s, s.t. Lg < Zsebebg < k-Lg
ecE ecE

Forget L, given A = Zaeag find s, s.t. A < Zseaeal <Kk-A
ecE ecE

Same as, given I = Zvev; find s, s.t. I < Zsevevl < k-1
ecE ecE

How to get it? ve < A_l/Qae

T T
Then D cpseveve * I <= ) pSeaca; ~ A
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Spectral Graph Sparsification: Intuition

How does } g vevi = I look like geometrically?
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Spectral Graph Sparsification: Intuition

How does } g vevi = I look like geometrically?
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Decomposition of identity: Vu (unit vector): Y, p(u've)? =1
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Spectral Graph Sparsification: Intuition
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?

K, graph ZeeEbel_J_g_ =L YoecEVeVe =1

.
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Spectral Graph Sparsification: Intuition

Example: What happens with K,?

K, graph Y ecebebl =L YoecEVeVe =1

It is already isotropic! (looks like a sphere)
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Dumbbell Y ecebebl =Lg YoecEVeve =1
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Dumbbell Y ecebebl =Lg YoecEVeve =1

The vector corresponding to the link gets stretched!
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