

Graphs in Machine Learning

Spectral Graph Sparsifiers: Theory

Effective Resistance and Spielman-Teng Algorithm

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Rob Fergus, Nikhil Srivastava,
Yiannis Koutis, Joshua Batson, Daniel Spielman



Spectral Graph Sparsifiers

Rayleigh-Ritz gives:

Spectral Graph Sparsifiers

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

Spectral Graph Sparsifiers

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

Spectral Graph Sparsifiers

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

$$(1 - \varepsilon) \mathbf{f}^T \mathbf{L}_G \mathbf{f} \leq \mathbf{f}^T \mathbf{L}_H \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^T \mathbf{L}_G \mathbf{f}$$

Spectral Graph Sparsifiers

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

$$(1 - \varepsilon) \mathbf{f}^T \mathbf{L}_G \mathbf{f} \leq \mathbf{f}^T \mathbf{L}_H \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^T \mathbf{L}_G \mathbf{f}$$

Eigenvalues are approximated well!

$$(1 - \varepsilon) \lambda_i(G) \leq \lambda_i(H) \leq (1 + \varepsilon) \lambda_i(G)$$

Using matrix ordering notation $(1 - \varepsilon) \mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon) \mathbf{L}_G$

Spectral Graph Sparsifiers

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^T \mathbf{L} \mathbf{x}}{\mathbf{x}^T \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

$$(1 - \varepsilon) \mathbf{f}^T \mathbf{L}_G \mathbf{f} \leq \mathbf{f}^T \mathbf{L}_H \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^T \mathbf{L}_G \mathbf{f}$$

Eigenvalues are approximated well!

$$(1 - \varepsilon) \lambda_i(G) \leq \lambda_i(H) \leq (1 + \varepsilon) \lambda_i(G)$$

Using matrix ordering notation $(1 - \varepsilon) \mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon) \mathbf{L}_G$

As a consequence, $\arg \min_{\mathbf{x}} \|\mathbf{L}_H \mathbf{x} - \mathbf{b}\| \approx \arg \min_{\mathbf{x}} \|\mathbf{L}_G \mathbf{x} - \mathbf{b}\|$

Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral ε -sparsifier

Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral ε -sparsifier

- with only $\mathcal{O}(n \log(n)/\varepsilon^2)$ edges

Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral ε -sparsifier

- with only $\mathcal{O}(n \log(n)/\varepsilon^2)$ edges
- in $\mathcal{O}(m \log^2(n))$ time and $\mathcal{O}(n \log(n)/\varepsilon^2)$ space

Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)

There exists an algorithm that can construct a spectral ε -sparsifier

- with only $\mathcal{O}(n \log(n)/\varepsilon^2)$ edges
- in $\mathcal{O}(m \log^2(n))$ time and $\mathcal{O}(n \log(n)/\varepsilon^2)$ space
- a single pass over the data

Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^\top (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \quad (1)$$

Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \Re^n} (\mathbf{f} - \mathbf{y})^\top (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \quad (1)$$

	Preproc	Time	Space
$\widehat{\mathbf{f}} = (\lambda \mathbf{L}_G + \mathbf{I})^{-1} \mathbf{y}$	0	$\mathcal{O}(m \log(n))$	$\mathcal{O}(m)$

Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \Re^n} (\mathbf{f} - \mathbf{y})^\top (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \quad (1)$$

	Preproc	Time	Space
$\widehat{\mathbf{f}} = (\lambda \mathbf{L}_G + \mathbf{I})^{-1} \mathbf{y}$	0	$\mathcal{O}(m \log(n))$	$\mathcal{O}(m)$
$\widetilde{\mathbf{f}} = (\lambda \mathbf{L}_H + \mathbf{I})^{-1} \mathbf{y}$	$\mathcal{O}(m \log^2(n))$	$\mathcal{O}(n \log^2(n))$	$\mathcal{O}(n \log(n))$

Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \Re^n} (\mathbf{f} - \mathbf{y})^\top (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \quad (1)$$

	Preproc	Time	Space
$\widehat{\mathbf{f}} = (\lambda \mathbf{L}_G + \mathbf{I})^{-1} \mathbf{y}$	0	$\mathcal{O}(m \log(n))$	$\mathcal{O}(m)$
$\widetilde{\mathbf{f}} = (\lambda \mathbf{L}_H + \mathbf{I})^{-1} \mathbf{y}$	$\mathcal{O}(m \log^2(n))$	$\mathcal{O}(n \log^2(n))$	$\mathcal{O}(n \log(n))$

Large computational improvement

↳ accuracy guarantees! Sadhanala et al., 2016

Spectral Graph Sparsifiers in ML

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \Re^n} (\mathbf{f} - \mathbf{y})^\top (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \quad (1)$$

	Preproc	Time	Space
$\widehat{\mathbf{f}} = (\lambda \mathbf{L}_G + \mathbf{I})^{-1} \mathbf{y}$	0	$\mathcal{O}(m \log(n))$	$\mathcal{O}(m)$
$\widetilde{\mathbf{f}} = (\lambda \mathbf{L}_H + \mathbf{I})^{-1} \mathbf{y}$	$\mathcal{O}(m \log^2(n))$	$\mathcal{O}(n \log^2(n))$	$\mathcal{O}(n \log(n))$

Large computational improvement

↳ accuracy guarantees! Sadhanala et al., 2016

Need to approximate spectrum only up to regularization level λ

Ridge Spectral Graph Sparsifiers in ML

Definition

An (ε, γ) -sparsifier of G is a reweighted subgraph H s.t.

$$(1 - \varepsilon)\mathbf{L}_G - \varepsilon\gamma\mathbf{I} \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G + \varepsilon\gamma\mathbf{I} \quad (2)$$

Ridge Spectral Graph Sparsifiers in ML

Definition

An (ε, γ) -sparsifier of G is a reweighted subgraph H s.t.

$$(1 - \varepsilon)\mathbf{L}_G - \varepsilon\gamma\mathbf{I} \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G + \varepsilon\gamma\mathbf{I} \quad (2)$$

Mixed multiplicative / additive error

- large (i.e. $\geq \gamma$) directions reconstructed accurately
- small (i.e. $\leq \gamma$) directions uniformly approximated ($\gamma\mathbf{I}$)

Ridge Spectral Graph Sparsifiers in ML

Definition

An (ε, γ) -sparsifier of G is a reweighted subgraph H s.t.

$$(1 - \varepsilon)\mathbf{L}_G - \varepsilon\gamma\mathbf{I} \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G + \varepsilon\gamma\mathbf{I} \quad (2)$$

Mixed multiplicative / additive error

- large (i.e. $\geq \gamma$) directions reconstructed accurately
- small (i.e. $\leq \gamma$) directions uniformly approximated ($\gamma\mathbf{I}$)

Adapted from Randomized Linear Algebra (RLA) community
↳ PSD matrix low-rank approx. Alaoui and Mahoney, 2015

Ridge Spectral Graph Sparsifiers in ML

Definition

An (ε, γ) -sparsifier of G is a reweighted subgraph H s.t.

$$(1 - \varepsilon)\mathbf{L}_G - \varepsilon\gamma\mathbf{I} \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G + \varepsilon\gamma\mathbf{I} \quad (2)$$

Mixed multiplicative / additive error

- large (i.e. $\geq \gamma$) directions reconstructed accurately
- small (i.e. $\leq \gamma$) directions uniformly approximated ($\gamma\mathbf{I}$)

Adapted from Randomized Linear Algebra (RLA) community
↳ PSD matrix low-rank approx. Alaoui and Mahoney, 2015

RLA \rightarrow Graph: Improve over $\mathcal{O}(n \log n)$ exploiting regularization

Graph \rightarrow RLA: Exploit \mathbf{L}_G structure for fast (ε, γ) -sparsification

Spectral Graph Sparsification: Intuition

Let us consider unweighted graphs: $w_{ij} \in \{0, 1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij}$$

Spectral Graph Sparsification: Intuition

Let us consider unweighted graphs: $w_{ij} \in \{0, 1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\delta_i - \delta_j)(\delta_i - \delta_j)^\top$$

Spectral Graph Sparsification: Intuition

Let us consider unweighted graphs: $w_{ij} \in \{0, 1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\delta_i - \delta_j)(\delta_i - \delta_j)^\top = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$$

Spectral Graph Sparsification: Intuition

Let us consider unweighted graphs: $w_{ij} \in \{0, 1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\delta_i - \delta_j)(\delta_i - \delta_j)^\top = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$$

We look for a **subgraph** H

$$\mathbf{L}_H = \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top$$

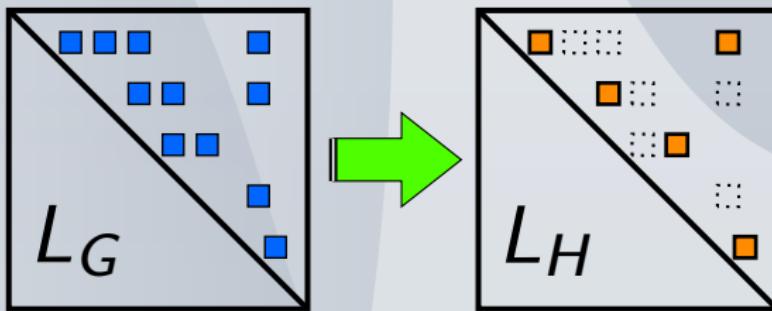
Spectral Graph Sparsification: Intuition

Let us consider unweighted graphs: $w_{ij} \in \{0, 1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\delta_i - \delta_j)(\delta_i - \delta_j)^T = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^T$$

We look for a **subgraph** H

$$\mathbf{L}_H = \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^T \quad \text{where } s_e \text{ is a new weight of edge } e$$



<https://math.berkeley.edu/~nikhil/>

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Forget \mathbf{L} , given $\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\top$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Forget \mathbf{L} , given $\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\top$ find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\top \preceq \kappa \cdot \mathbf{A}$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Forget \mathbf{L} , given $\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\top$ find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\top \preceq \kappa \cdot \mathbf{A}$

Same as, given $\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Forget \mathbf{L} , given $\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\top$ find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\top \preceq \kappa \cdot \mathbf{A}$

Same as, given $\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top$ find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\top \preceq \kappa \cdot \mathbf{I}$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Forget \mathbf{L} , given $\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\top$ find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\top \preceq \kappa \cdot \mathbf{A}$

Same as, given $\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top$ find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\top \preceq \kappa \cdot \mathbf{I}$

How to get it?

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find \mathbf{s} , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Forget \mathbf{L} , given $\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\top$ find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\top \preceq \kappa \cdot \mathbf{A}$

Same as, given $\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top$ find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\top \preceq \kappa \cdot \mathbf{I}$

How to get it? $\mathbf{v}_e \leftarrow \mathbf{A}^{-1/2} \mathbf{a}_e$

Spectral Graph Sparsification: Intuition

We want $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Equivalent, given $\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top$ find s , s.t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\top \preceq \kappa \cdot \mathbf{L}_G$

Forget \mathbf{L} , given $\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\top$ find s , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\top \preceq \kappa \cdot \mathbf{A}$

Same as, given $\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top$ find s , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\top \preceq \kappa \cdot \mathbf{I}$

How to get it? $\mathbf{v}_e \leftarrow \mathbf{A}^{-1/2} \mathbf{a}_e$

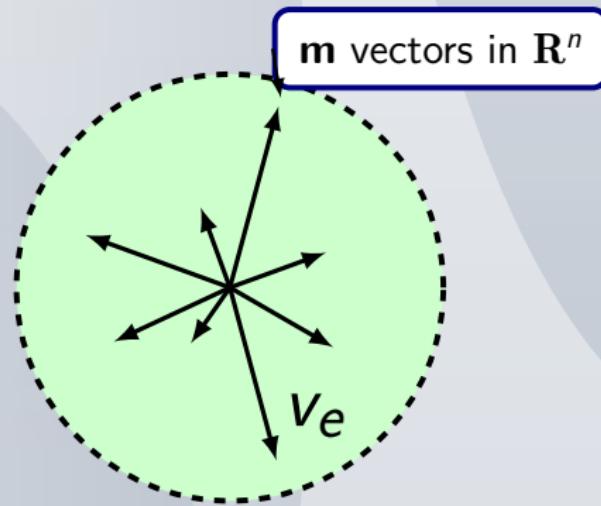
Then $\sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\top \approx \mathbf{I} \iff \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\top \approx \mathbf{A}$
multiplying by $\mathbf{A}^{1/2}$ on both sides

Spectral Graph Sparsification: Intuition

How does $\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top = \mathbf{I}$ look like geometrically?

Spectral Graph Sparsification: Intuition

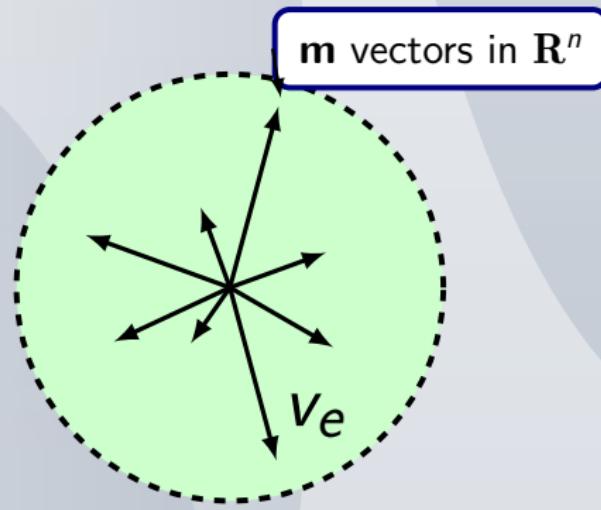
How does $\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top = \mathbf{I}$ look like geometrically?



Decomposition of identity: $\forall \mathbf{u}$ (unit vector): $\sum_{e \in E} (\mathbf{u}^\top \mathbf{v}_e)^2 = 1$

Spectral Graph Sparsification: Intuition

How does $\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top = \mathbf{I}$ look like geometrically?



Decomposition of identity: $\forall \mathbf{u}$ (unit vector): $\sum_{e \in E} (\mathbf{u}^\top \mathbf{v}_e)^2 = 1$
moment ellipse is a sphere

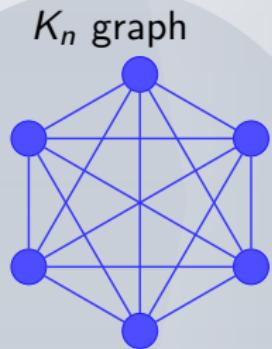
<https://math.berkeley.edu/~nikhil/>

Spectral Graph Sparsification: Intuition

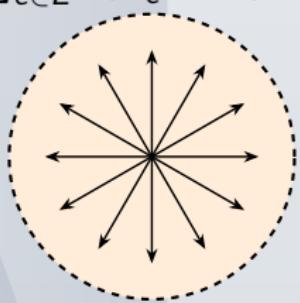
Example: What happens with K_n ?

Spectral Graph Sparsification: Intuition

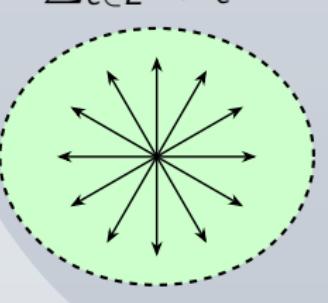
Example: What happens with K_n ?



$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^T = \mathbf{L}_G$$

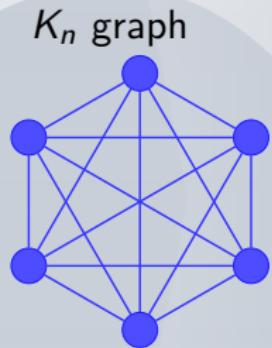


$$\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^T = \mathbf{I}$$

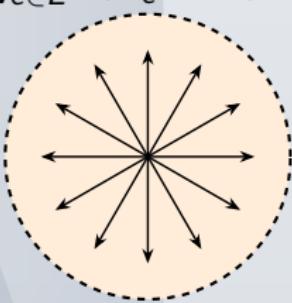


Spectral Graph Sparsification: Intuition

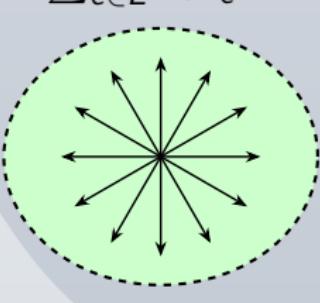
Example: What happens with K_n ?



$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^T = \mathbf{L}_G$$



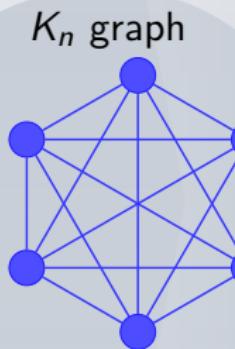
$$\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^T = \mathbf{I}$$



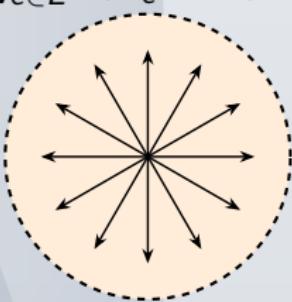
It is already isotropic! (looks like a sphere)

Spectral Graph Sparsification: Intuition

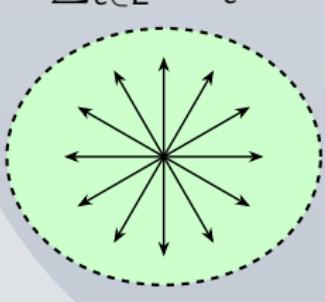
Example: What happens with K_n ?



$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^T = \mathbf{L}_G$$



$$\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^T = \mathbf{I}$$



It is already isotropic! (looks like a sphere)

rescaling $\mathbf{v}_e = \mathbf{L}^{-1/2} \mathbf{b}_e$ does not change the shape

<https://math.berkeley.edu/~nikhil/>

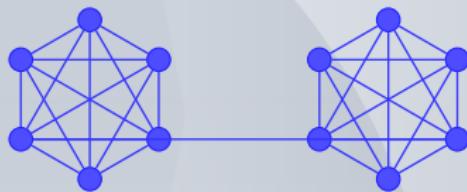
Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

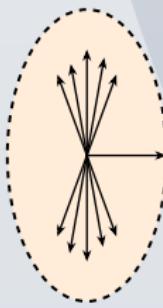
Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

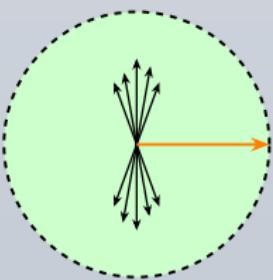
Dumbbell



$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top = \mathbf{L}_G$$



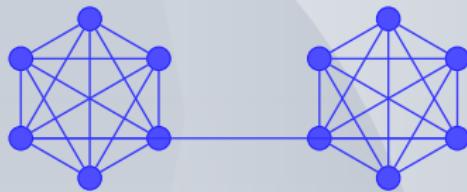
$$\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top = \mathbf{I}$$



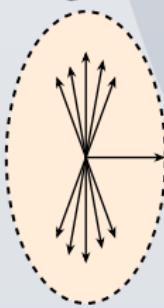
Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

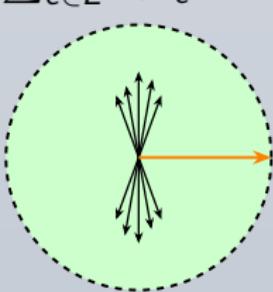
Dumbbell



$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top = \mathbf{L}_G$$



$$\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top = \mathbf{I}$$

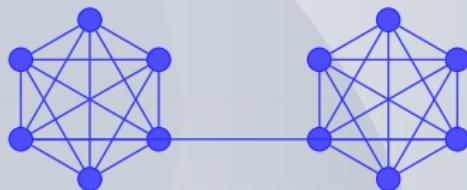


The vector corresponding to the link gets stretched!

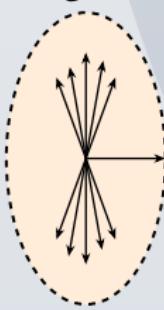
Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

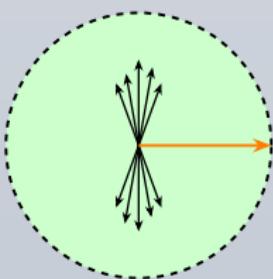
Dumbbell



$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top = \mathbf{L}_G$$



$$\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top = \mathbf{I}$$



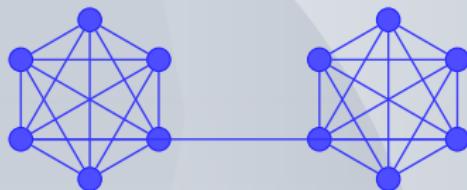
The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

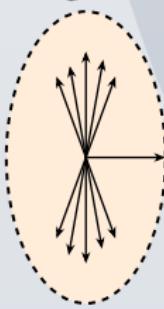
Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

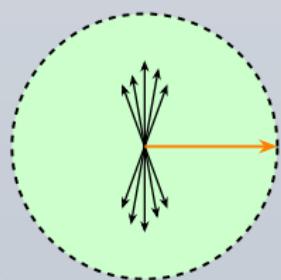
Dumbbell



$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\top = \mathbf{L}_G$$



$$\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\top = \mathbf{I}$$



The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

rescaling reveals the vectors that are critical

<https://math.berkeley.edu/~nikhil/>

References I

- Alaoui, A. E., & Mahoney, M. W. (2015). Fast randomized kernel methods with statistical guarantees. *Neural Information Processing Systems*.
- Kyng, R., Pachocki, J., Peng, R., & Sachdeva, S. (2017). A framework for analyzing resparsification algorithms. *Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms*, 2032–2043.
- Sadhanala, V., Wang, Y.-X., & Tibshirani, R. J. (2016). Graph sparsification approaches for Laplacian smoothing. *International Conference on Artificial Intelligence and Statistics*, 1250–1259.
- Spielman, D. A., & Srivastava, N. (2011). Graph sparsification by effective resistances. *Journal on Computing*, 40(6).

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

`https://misovalko.github.io/mva-ml-graphs.html`