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Spectral Graph Sparsifiers

Rayleigh-Ritz gives:

λmin = min xTLx
xTx and λmax = max xTLx

xTx

What can we say about λi(G) and λi(H)?

(1− ε)fTLG f ≤ fTLH f ≤ (1 + ε)fTLG f

Eigenvalues are approximated well!

(1− ε)λi(G) ≤ λi(H) ≤ (1 + ε)λi(G)

Using matrix ordering notation (1− ε)LG � LH � (1 + ε)LG

As a consequence, arg minx ‖LHx− b‖ ≈ arg minx ‖LGx− b‖
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Spectral Graph Sparsifiers in ML

Proposition (Kyng et al., 2017; Spielman and Srivastava, 2011)
There exists an algorithm that can construct a spectral ε-sparsifier

• with only O(n log(n)/ε2) edges
• in O(m log2(n)) time and O(n log(n)/ε2) space
• a single pass over the data
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Spectral Graph Sparsifiers in ML
Laplacian smoothing (denoising): given y , f? + ξ and G compute

min
f∈<n

(f− y)T(f− y) + λfTLG f (1)

Preproc Time Space
f̂ = (λLG + I)−1y 0 O(m log(n)) O(m)

f̃ = (λLH + I)−1y O(m log2(n)) O(n log2(n)) O(n log(n))

Large computational improvement
accuracy guarantees! Sadhanala et al., 2016

Need to approximate spectrum only up to regularization level λ
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Ridge Spectral Graph Sparsifiers in ML
Definition
An (ε, γ)-sparsifier of G is a reweighted subgraph H s.t.

(1− ε)LG − εγI � LH � (1 + ε)LG + εγI (2)

Mixed multiplicative/additive error

• large (i.e. ≥ γ) directions reconstructed accurately
• small (i.e. ≤ γ) directions uniformly approximated (γI)

Adapted from Randomized Linear Algebra (RLA) community
PSD matrix low-rank approx. Alaoui and Mahoney, 2015

RLA → Graph: Improve over O(n log n) exploiting regularization
Graph → RLA: Exploit LG structure for fast (ε, γ)-sparsification
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Spectral Graph Sparsification: Intuition
Let us consider unweighted graphs: wij ∈ {0, 1}

LG =
∑

ij
wijLij =

∑
ij∈E

Lij

=
∑
ij∈E

(δi − δj)(δi − δj)
T =

∑
e∈E

bebT
e

We look for a subgraph H

LH =
∑
e∈E

sebebT
e where se is a new weight of edge e

LG LH

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

We want (1− ε)LG � LH � (1 + ε)LG

Equivalent, given LG =
∑
e∈E

bebT
e find s, s.t. LG �

∑
e∈E

sebebT
e � κ·LG

Forget L, given A =
∑
e∈E

aeaT
e find s, s.t. A �

∑
e∈E

seaeaT
e � κ ·A

Same as, given I =
∑
e∈E

vevT
e find s, s.t. I �

∑
e∈E

sevevT
e � κ · I

How to get it? ve ← A−1/2ae

Then
∑

e∈E sevevT
e ≈ I ⇐⇒

∑
e∈E seaeaT

e ≈ A
multiplying by A1/2 on both sides
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Spectral Graph Sparsification: Intuition

How does
∑

e∈E vevT
e = I look like geometrically?

ve

m vectors in Rn

Decomposition of identity: ∀u (unit vector):
∑

e∈E (uTve)
2 = 1

moment ellipse is a sphere

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with Kn?

Kn graph
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

It is already isotropic! (looks like a sphere)
rescaling ve = L−1/2be does not change the shape

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

Example: What happens with a dumbbell?

Dumbbell
∑

e∈E bebT
e = LG

∑
e∈E vevT

e = I

The vector corresponding to the link gets stretched!
because this transformation makes all the directions important

rescaling reveals the vectors that are critical

https://math.berkeley.edu/~nikhil/
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