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Spectral Graph Sparsification: Intuition

What it this rescaling ve = L−1/2
G be doing to the norm?

‖ve‖2

=
∥∥∥L−1/2

G be

∥∥∥2 = bT
eL−1

G be

= Reff(e)

Random walk intuition: inverse of number of alternative paths

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reff(e).
Reff(e) is the potential difference between the nodes when injecting a unit current

Edges with higher Reff are more electrically significant!
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

m vectors in Rn Õ(n) vectors in Rn

We take a subset of these ees and scale them!

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?

ve

m vectors in Rn

κ

seve

O∼(n) vectors in Rn

Such that the blue ellipsoid looks like identity!
the blue eigenvalues are between 1 and κ

https://math.berkeley.edu/~nikhil/
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Spectral Graph Sparsification

Todo: Given I =
∑

e vevT
e , find a sparse reweighting.

Randomized algorithm that finds s:

Sample n log n/ε2 with replacement pi ∝ ‖ve‖2 (resistances)
Reweigh si =

1
pi

unbiased E[
∑

i sivivi ] =
∑

e sepeveve =
∑

e veve

Does this work?

Application of Matrix Chernoff Bound by Rudelson (1999)

1− ε ≺ λ

(∑
e

sevevT
e

)
≺ 1 + ε

finer bounds now available
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Ridge Spectral Graph Sparsification: Intuition

Definition

γ-effective resistance: re(γ) = bT
e(LG + γI)−1be

Effective dim.: deff(γ) =
∑

e re(γ) =
∑n

i=1
λi(LG)

λi(LG)+γ ≤ n

Interpretation as inverse of alternative paths (mostly) lost

Most existing graph algorithms inapplicable Kyng et al., 2017

Most existing RLA algorithms too slow Cohen et al., 2017

Adapt SOA algorithm for kernel matrix approximation
SQUEAK, Calandriello et al., 2017
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Spectral Graph Sparsification

We want to make this algorithm fast.

How can we compute the effective resistances?

Solve a linear system x̂ = arg minx ‖LGx − be‖ and then
Reff = bT

e x̂

Gaussian Elimination O(n3)

Fast Matrix Multiplication O(n2.37)

Spielman & Teng (2004) O(m log30 n)
Koutis, Miller, and Peng (2010) O(m log n)

• Fast solvers for SDD systems:

use sparsification internally
all the way until you hit the turtles
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Spectral Graph Sparsification
Chicken and egg problem

We need Reff to compute a sparsifier H
We need a sparsifier H to compute Reff

Sampling according to approximate effective resistances
Reff ≤ R̃eff ≤ αReff give approximate sparsifier LG � LH � ακLG

Start with poor approximation R̃eff ∼ 1/n and poor sparsifier nI.

Use R̃eff to compute an improved approximate sparsifier H
Use the sparsifier H to compute improved approximate R̃eff

Computing R̃eff using the sparsifier is fast (m = O(n log(n))), and
not too many iterations are necessary.
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What can I use sparsifiers for?

• Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

• More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

electric circuit, fluid equations, finite elements methods

• Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
Or if my boss does not trust approximation methods
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