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What it this rescaling v, = Lgl/2be doing to the norm?

- 2 B
HVeH2 = HLGI/2be = b;LGIbe = Reff(e)

Random walk intuition: inverse of number of alternative paths

Electrical intuition: We want to find an electrically similar H and
the importance of the edge is its effective resistance Reg(e).

Edges with higher R are more electrically significant!
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?
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Spectral Graph Sparsification: Intuition

What are we doing by choosing H?

(m vectors in R") [O(n) vectors in R”]

We take a subset of these e.s and scale them!
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Spectral Graph Sparsification: Intuition

What kind of scaling go we want?
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Spectral Graph Sparsification:
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Such that the blue ellipsoid looks like identity!
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Spectral Graph Sparsification

Todo: Given I =3"_v.v(, find a sparse reweighting.

Randomized algorithm that finds s:
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Definition
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Ridge Spectral Graph Sparsification: Intuition

Definition

~-effective resistance: re(y) = bl(Lg + 1)~ 'b,

Effective dim.: der(7) =D . re(7) = D1y % <n

Interpretation as inverse of alternative paths (mostly) lost

Most existing graph algorithms inapplicable Kyng et al., 2017
Most existing RLA algorithms too slow Cohen et al., 2017

Adapt SOA algorithm for kernel matrix approximation
SQUEAK, Calandriello et al., 2017
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Spectral Graph Sparsification

We want to make this algorithm fast.
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Spectral Graph Sparsification

We want to make this algorithm fast.
How can we compute the effective resistances?

Solve a linear system X = argmin, ||Lgx — be|| and then

Refr = bix
Gaussian Elimination O(n*)
Fast Matrix Multiplication O(n*37)
Spielman & Teng (2004) O(mlog® n)
Koutis, Miller, and Peng (2010) O(mlogn)

= Fast solvers for SDD systems:
L, use sparsification internally
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Spectral Graph Sparsification
Chicken and egg problem

We need R.¢ to compute a sparsifier H €1
L, We need a sparsifier H to compute Ref
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Spectral Graph Sparsification

Chicken and egg problem

We need R.¢ to compute a sparsifier H €1
L, We need a sparsifier H to compute Ref

Sampling according to approximate effective resistances
Reff < Reff < aRefr give approximate sparsifier Lg < Ly =X akLg

Start with poor approximation ﬁeff ~ 1/n and poor sparsifier nl.

Use keff-' to compute an improved approximate sparsifier H ¥
L, Use the sparsifier H to compute improved approximate R

Computing Ref using the sparsifier is fast (m = O(nlog(n))), and
not too many iterations are necessary.
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What can | use sparsifiers for?

= Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

But what if my problems have no use for spectral guarantees?
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What can | use sparsifiers for?

= Graph linear systems: minimum cut, maximum flow, Laplacian
regression, SSL

= More in general, solving Strongly Diagonally Dominant (SDD)
linear systems

L, electric circuit, fluid equations, finite elements methods

= Various embeddings: k-means, spectral clustering.

But what if my problems have no use for spectral guarantees?
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