



# Graphs in Machine Learning

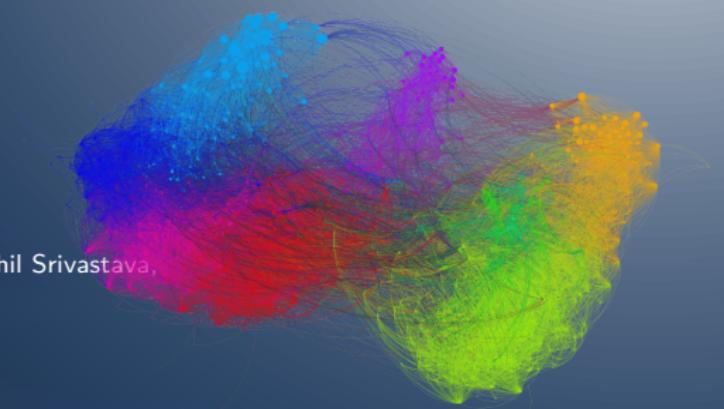
## Cut Graph Sparsifiers

Benczur-Karger Algorithm

Michal Valko

*Inria & ENS Paris-Saclay, MVA*

Partially based on material by: Rob Fergus, Nikhil Srivastava,  
Yiannis Koutis, Joshua Batson, Daniel Spielman



# Cut Graph Sparsifiers

Define  $G$  and  $H$  are  $(1 \pm \varepsilon)$ -**cut similar** when  $\forall S$

$$(1 - \varepsilon)\text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon)\text{cut}_H(S)$$

# Cut Graph Sparsifiers

Define  $G$  and  $H$  are  $(1 \pm \varepsilon)$ -**cut similar** when  $\forall S$

$$(1 - \varepsilon)\text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon)\text{cut}_H(S)$$

Why did they care?

# Cut Graph Sparsifiers

Define  $G$  and  $H$  are  **$(1 \pm \varepsilon)$ -cut similar** when  $\forall S$

$$(1 - \varepsilon)\text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon)\text{cut}_H(S)$$

Why did they care? faster mincut/maxflow

# Cut Graph Sparsifiers

Define  $G$  and  $H$  are  **$(1 \pm \varepsilon)$ -cut similar** when  $\forall S$

$$(1 - \varepsilon)\text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon)\text{cut}_H(S)$$

Why did they care? faster mincut/maxflow

Is this always possible?

# Cut Graph Sparsifiers

Define  $G$  and  $H$  are  **$(1 \pm \varepsilon)$ -cut similar** when  $\forall S$

$$(1 - \varepsilon)\text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon)\text{cut}_H(S)$$

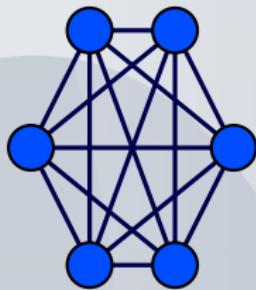
Why did they care? faster mincut/maxflow

Is this always possible? Benczúr and Karger (1996): Yes!

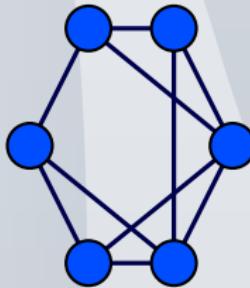
$\forall \varepsilon \exists$   $(1 + \varepsilon)$ -cut similar  $H$  with  $\mathcal{O}(n \log n / \varepsilon^2)$  edges s.t.  $E_H \subseteq E$  and computable in  $\mathcal{O}(m \log^3 n + m \log n / \varepsilon^2)$  time  $n$  nodes,  $m$  edges

# Cut Graph Sparsifiers

$G = K_n$

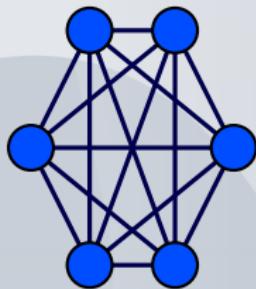


$H = d\text{-regular}$  (random)

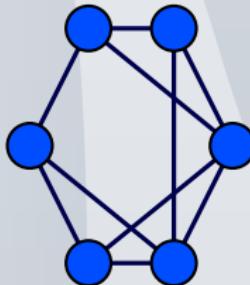


# Cut Graph Sparsifiers

$G = K_n$



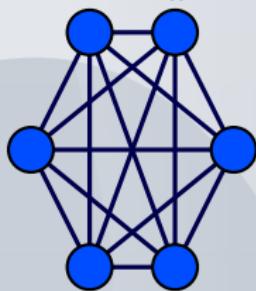
$H = d\text{-regular}$  (random)



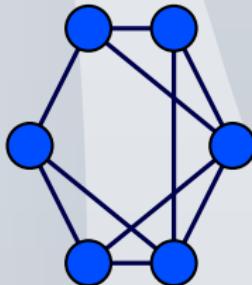
How many edges?

# Cut Graph Sparsifiers

$$G = K_n$$



$$H = d\text{-regular} \text{ (random)}$$

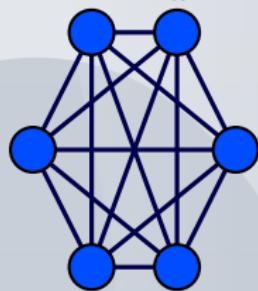


How many edges?

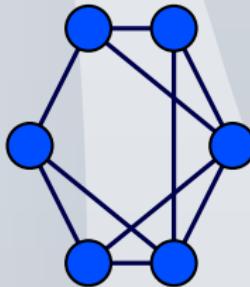
$$|E_G| = \mathcal{O}(n^2)$$

# Cut Graph Sparsifiers

$G = K_n$



$H = d\text{-regular}$  (random)



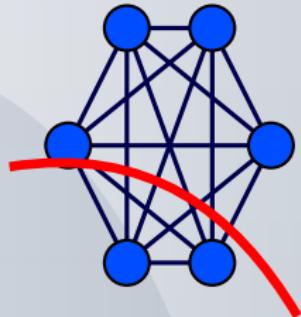
How many edges?

$$|E_G| = \mathcal{O}(n^2)$$

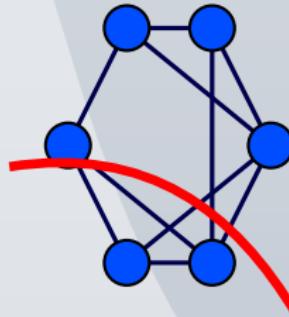
$$|E_H| = \mathcal{O}(dn)$$

# Cut Graph Sparsifiers

$G = K_n$

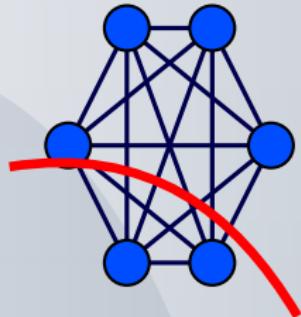


$H = d\text{-regular}$  (random)

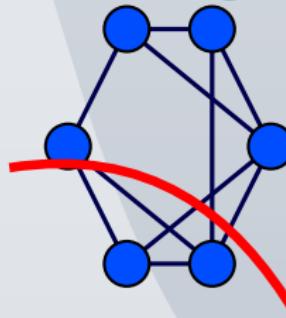


# Cut Graph Sparsifiers

$$G = K_n$$



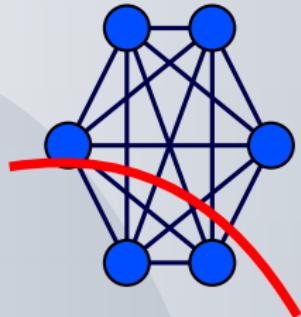
$$H = d\text{-regular} \text{ (random)}$$



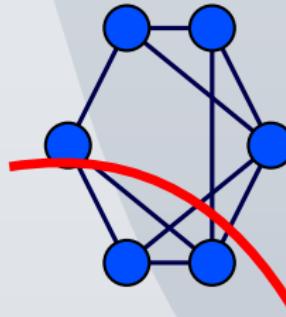
What are the cut weights for any  $S$ ?

# Cut Graph Sparsifiers

$$G = K_n$$



$$H = d\text{-regular} \text{ (random)}$$

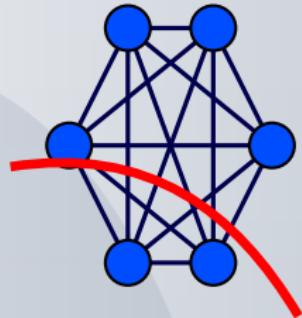


What are the cut weights for any  $S$ ?

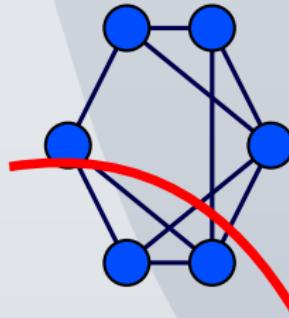
$$w_G(\delta S) = |S| \cdot |\bar{S}|$$

# Cut Graph Sparsifiers

$$G = K_n$$



$$H = d\text{-regular} \text{ (random)}$$



What are the cut weights for any  $S$ ?

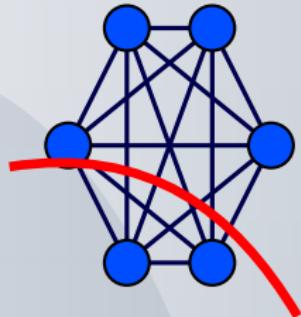
$$w_G(\delta S) = |S| \cdot |\bar{S}|$$

$$w_H(\delta S) \approx \frac{d}{n} \cdot |S| \cdot |\bar{S}|$$

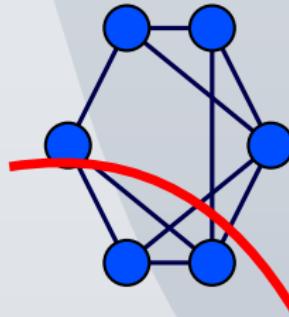
$$\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx \frac{n}{d}$$

# Cut Graph Sparsifiers

$$G = K_n$$



$$H = d\text{-regular} \text{ (random)}$$



What are the cut weights for any  $S$ ?

$$w_G(\delta S) = |S| \cdot |\bar{S}|$$

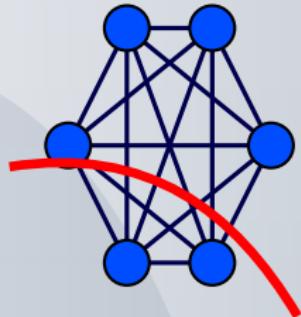
$$w_H(\delta S) \approx \frac{d}{n} \cdot |S| \cdot |\bar{S}|$$

$$\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx \frac{n}{d}$$

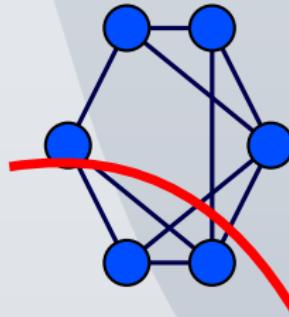
Could be large :(

# Cut Graph Sparsifiers

$$G = K_n$$



$$H = d\text{-regular} \text{ (random)}$$



What are the cut weights for any  $S$ ?

$$w_G(\delta S) = |S| \cdot |\bar{S}|$$

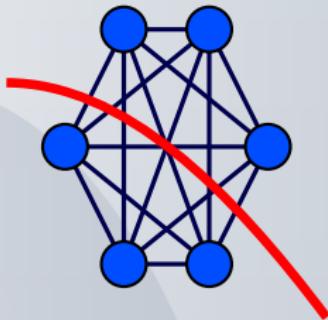
$$w_H(\delta S) \approx \frac{d}{n} \cdot |S| \cdot |\bar{S}|$$

$$\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx \frac{n}{d}$$

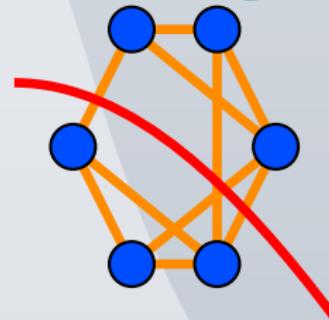
Could be large :( What to do?

# Cut Graph Sparsifiers

$G = K_n$

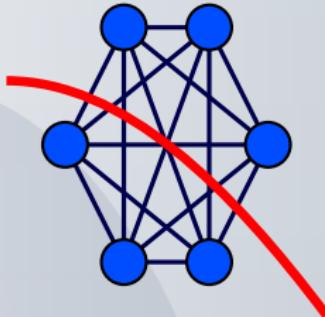


$H = d\text{-regular}$  (random)

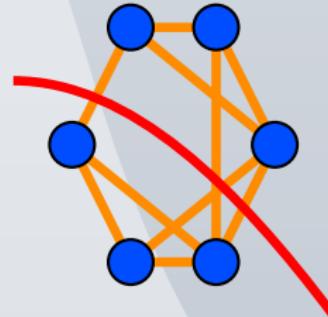


# Cut Graph Sparsifiers

$G = K_n$



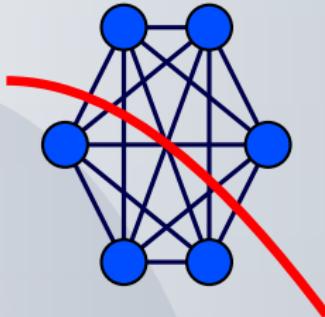
$H = d\text{-regular}$  (random)



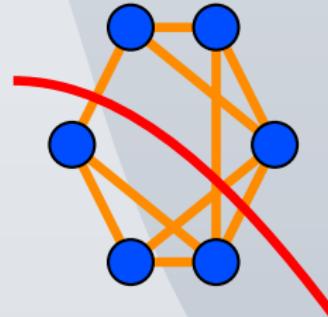
What are the cut weights for any  $S$ ?

# Cut Graph Sparsifiers

$$G = K_n$$



$$H = d\text{-regular} \text{ (random)}$$

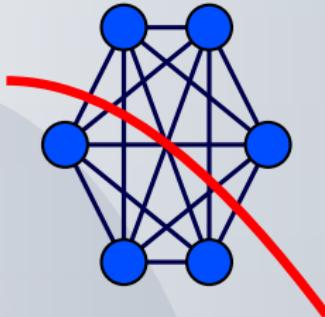


What are the cut weights for any  $S$ ?

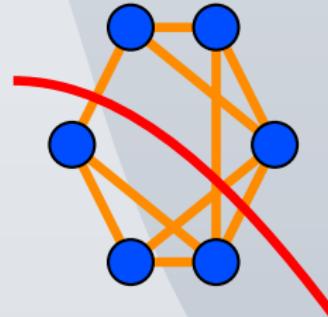
$$w_G(\delta S) = |S| \cdot |\bar{S}|$$

# Cut Graph Sparsifiers

$G = K_n$



$H = d\text{-regular}$  (random)



What are the cut weights for any  $S$ ?

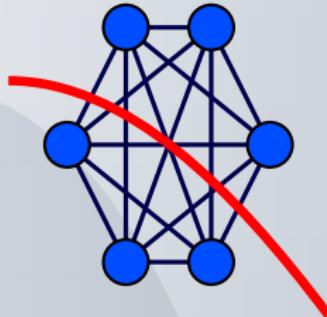
$$w_G(\delta S) = |S| \cdot |\bar{S}|$$

$$w_H(\delta S) \approx \frac{d}{n} \cdot \frac{n}{d} \cdot |S| \cdot |\bar{S}|$$

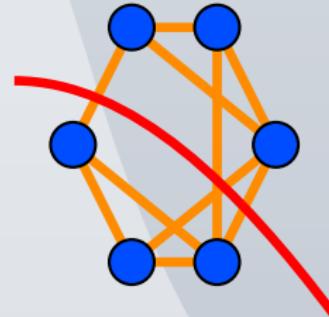
$$\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx 1$$

# Cut Graph Sparsifiers

$$G = K_n$$



$$H = d\text{-regular} \text{ (random)}$$



What are the cut weights for any  $S$ ?

$$w_G(\delta S) = |S| \cdot |\bar{S}|$$

$$w_H(\delta S) \approx \frac{d}{n} \cdot \frac{n}{d} \cdot |S| \cdot |\bar{S}|$$

$$\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx 1$$

Benczúr & Karger: Can find such  $H$  quickly for any  $G$ !

# Graph Sparsification: What is **good** sparse?

Recall if  $f \in \{0, 1\}^n$  represents  $S$  then  $f^T L_G f =$

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

$$(1 - \varepsilon) \text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon) \text{cut}_H(S)$$

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

$$(1 - \varepsilon) \text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon) \text{cut}_H(S)$$

becomes

$$(1 - \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f} \leq \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f}$$

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

$$(1 - \varepsilon) \text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon) \text{cut}_H(S)$$

becomes

$$(1 - \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f} \leq \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f}$$

If we ask this only for  $\mathbf{f} \in \{0, 1\}^n \rightarrow (1 + \varepsilon)\text{-cut similar}$  combinatorial  
Benczúr & Karger (1996)

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

$$(1 - \varepsilon) \text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon) \text{cut}_H(S)$$

becomes

$$(1 - \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f} \leq \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f}$$

If we ask this only for  $\mathbf{f} \in \{0, 1\}^n \rightarrow (1 + \varepsilon)\text{-cut similar}$  combinatorial  
Benczúr & Karger (1996)

If we ask this for all  $\mathbf{f} \in \mathbb{R}^n \rightarrow$

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

$$(1 - \varepsilon) \text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon) \text{cut}_H(S)$$

becomes

$$(1 - \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f} \leq \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f}$$

If we ask this only for  $\mathbf{f} \in \{0, 1\}^n \rightarrow (1 + \varepsilon)\text{-cut similar}$  combinatorial  
Benczúr & Karger (1996)

If we ask this for all  $\mathbf{f} \in \mathbb{R}^n \rightarrow (1 + \varepsilon)\text{-spectrally similar}$

Spielman & Teng (2004)

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

$$(1 - \varepsilon) \text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon) \text{cut}_H(S)$$

becomes

$$(1 - \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f} \leq \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f}$$

If we ask this only for  $\mathbf{f} \in \{0, 1\}^n \rightarrow (1 + \varepsilon)\text{-cut similar}$  combinatorial  
Benczúr & Karger (1996)

If we ask this for all  $\mathbf{f} \in \mathbb{R}^n \rightarrow (1 + \varepsilon)\text{-spectrally similar}$   
Spielman & Teng (2004)

Spectral sparsifiers are stronger!

# Graph Sparsification: What is **good** sparse?

Recall if  $\mathbf{f} \in \{0, 1\}^n$  represents  $S$  then  $\mathbf{f}^\top \mathbf{L}_G \mathbf{f} = \text{cut}_G(S)$

$$(1 - \varepsilon) \text{cut}_H(S) \leq \text{cut}_G(S) \leq (1 + \varepsilon) \text{cut}_H(S)$$

becomes

$$(1 - \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f} \leq \mathbf{f}^\top \mathbf{L}_G \mathbf{f} \leq (1 + \varepsilon) \mathbf{f}^\top \mathbf{L}_H \mathbf{f}$$

If we ask this only for  $\mathbf{f} \in \{0, 1\}^n \rightarrow (1 + \varepsilon)\text{-cut similar}$  combinatorial  
Benczúr & Karger (1996)

If we ask this for all  $\mathbf{f} \in \mathbb{R}^n \rightarrow (1 + \varepsilon)\text{-spectrally similar}$   
Spielman & Teng (2004)

Spectral sparsifiers are stronger!

but checking for spectral similarity is easier

# Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA



`https://misovalko.github.io/mva-ml-graphs.html`