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Cut Graph Sparsifiers

Define G and H are (1± ε)-cut similar when ∀S

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

Why did they care? faster mincut/maxflow

Is this always possible? Benczúr and Karger (1996): Yes!
∀ε ∃ (1 + ε)-cut similar H with O(n log n/ε2) edges s.t. EH ⊆ E
and computable in O(m log3 n + m log n/ε2) time n nodes, m edges
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Cut Graph Sparsifiers

G = Kn H = d-regular (random)

How many edges?

|EG | = O(n2) |EH | = O(dn)
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Cut Graph Sparsifiers

G = Kn H = d-regular (random)

What are the cut weights for any S?

wG(δS) = |S| · |S| wH(δS) ≈ d
n · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈ n

d

Could be large :( What to do?
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d · |S| · |S|

∀S ⊂ V :
wG(δS)
wH(δS) ≈ 1

Benczúr & Karger: Can find such H quickly for any G!
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Graph Sparsification: What is good sparse?

Recall if f ∈ {0, 1}n represents S then fTLG f =

cutG(S)

(1− ε)cutH(S) ≤ cutG(S) ≤ (1 + ε)cutH(S)

becomes
(1− ε)fTLH f ≤ fTLG f ≤ (1 + ε)fTLH f

If we ask this only for f ∈ {0, 1}n → (1 + ε)-cut similar combinatorial
Benczúr & Karger (1996)

If we ask this for all f ∈ Rn → (1 + ε)-spectrally similar
Spielman & Teng (2004)

Spectral sparsifiers are stronger!
but checking for spectral similarity is easier
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