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..which is the same if we disregard the last column and row ..
Ly +v6ly, Ly, }[ﬂ]_[]
Lul Luu F fYGInu fu Ou

..and therefore we simply add ~¢ to the diagonal of L!
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SSL with Graphs: Regularized Harmonic
Functions

How do we compute this regularized random walk?

fu = (Luu A ’\/gI)_l (Wulfl)

How does 7, influence HS?

R
o
h Ao o

What happens to sneaky outliers?
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Regularized HS objective with Q = L + ~,I:

n

min o0 (F(x;) — yi)2 + A
feR"+nu i—1

What if we do not really believe that f(x;) = y;, Vi?

£ = min (f— y)"C(f —
o C(f-y) +

¢, for labeled examples
C is diagonal with Cj =< . P
c, otherwise.

: true label for labeled examples
y = pseudo-targets with y; = )
0 otherwise.
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SSL with Graphs: Soft Harmonic Functions
[— ] — T pu—
£ = min (f—y)'C(f—y) +
Closed form soft harmonic solution:
= 'Q+1)ly

x 1, = 1.000 1,=0.200 1,=0.040

& N o o

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.
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This algorithm is S-stable!
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The goal of these solutions: make them remember!
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled
data.

They are transductive.

What if a new point Xp, 4,41 arrives?

Option 1) Add it to the graph and recompute HFS.
Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X — R
Allow f(x;) # yi. Why? To deal with noise.

Solution: Manifold Regularization
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