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SSL with Graphs: Regularized Harmonic
Functions

fi = p(+1)
i − p(−1)

i

=⇒ fi = |fi |︸︷︷︸
confidence

× sgn(fi)︸ ︷︷ ︸
label

What if a nasty outlier sneaks in?

The prediction for the outlier can be hyperconfident :(

How to control the confidence of the inference?

Allow the random walk to die!

We add a sink to the graph.

sink = artificial label node with value 0

We connect it to every other vertex.
What will this do to our predictions?

depends on the weigh on the edges
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SSL with Graphs: Regularized Harmonic
Functions

How do we represent the sink in L explicitly?

Formally, to get the harmonic solution on the graph with sink … Lll + γGInl Llu −γG1nl×1

Lul Luu + γGInu −γG1nu×1

−γG11×nl −γG11×nu nγG

 fl
fu
0

 =

 . . .
0u
. . .


Lul fl + (Luu + γGInu) fu = 0u

…which is the same if we disregard the last column and row …[
Lll + γGInl Llu

Lul Luu + γGInu

] [
fl
fu

]
=

[
. . .
0u

]

…and therefore we simply add γG to the diagonal of L!
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SSL with Graphs: Regularized Harmonic
Functions

How do we compute this regularized random walk?

fu = (Luu + γgI)−1 (Wul fl)

How does γg influence HS?

What happens to sneaky outliers?
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SSL with Graphs: Soft Harmonic Functions

Regularized HS objective with Q = L + γgI:

min
f∈Rnl+nu

∞
nl∑

i=1

(f (xi)− yi)
2 + λfTQf

What if we do not really believe that f (xi) = yi , ∀i?

f? = min
f∈RN

(f − y)TC(f − y) + fTQf

C is diagonal with Cii =

{
cl for labeled examples
cu otherwise.

y ≡ pseudo-targets with yi =

{
true label for labeled examples
0 otherwise.
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SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Michal Valko – Graphs in Machine Learning 6/12



SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Michal Valko – Graphs in Machine Learning 6/12



SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Michal Valko – Graphs in Machine Learning 6/12



SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?

Not much different in practice.
Provable generalization guarantees for the soft one.

Michal Valko – Graphs in Machine Learning 6/12



SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Michal Valko – Graphs in Machine Learning 6/12



SSL with Graphs: Soft Harmonic Functions

f? = min
f∈Rn

(f − y)TC(f − y) + fTQf

Closed form soft harmonic solution:

f? = (C−1Q + I)−1y

What are the differences between hard and soft?
Not much different in practice.

Provable generalization guarantees for the soft one.

Michal Valko – Graphs in Machine Learning 6/12



SSL with Graphs: Stability Bounds

f? = min
f∈RN

(f − y)TC(f − y) + fTQf

Think about stability of this solution.
Consider two datasets differing in exactly one labeled point.
C1 = C−1

1 Q + I and C2 = C−1
2 Q + I

What is the maximal difference in the solutions?

f?2 − f?1 = C−1
2 y2 − C−1

1 y1

= C−1
2 (y2 − y1)−

(
C−1
1 − C−1

2

)
y1

= C−1
2 (y2 − y1)−

(
C−1
1

[(
C−1
1 − C−1

2

)
Q
]
C−1
2

)
y1

Note that v ∈ RN×1, λm(A)‖v‖2 ≤ ‖Av‖2 ≤ λM(A)‖v‖2

‖f?2 − f?1‖2 ≤
‖y2 − y1‖2
λm(C2)

+
λM(Q)‖C−1

1 − C−1
2 ‖2 · ‖y1‖2

λm(C2)λm(C1)
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λM(C) + 1
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λM(Q)‖C−1
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λm(Q)
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λm(Q)
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SSL with Graphs: Stability Bounds

‖f?2 − f?1‖∞ ≤ β ≤ ‖y2 − y1‖2
λm(Q)
λM(C1)

+ 1
+

λM(Q)‖C−1
1 − C−1

2 ‖2 · ‖y1‖2(
λm(Q)
λM(C2)

+ 1
)(

λm(Q)
λM(C1)

+ 1
)

Now, let us plug in the values for our problem.

Take cl = 1 and cl > cu. We have |yi | ≤ 1 and |f ?i | ≤ 1.

β ≤ 2

[ √
2

λm(Q) + 1
+
√
2nl

1− cu
cu

λM(Q)

(λm(Q) + 1)2

]
Q is reg. L: λm(Q) = λm(L) + γg and λM(Q) = λM(L) + γg

β ≤ 2

[ √
2

γg + 1
+

√
2nl

1− cu
cu

λM(L) + γg
γ2g + 1

]

This algorithm is β-stable!
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Now, let us plug in the values for our problem.

Take cl = 1 and cl > cu. We have |yi | ≤ 1 and |f ?i | ≤ 1.

β ≤ 2

[ √
2

λm(Q) + 1
+
√
2nl

1− cu
cu
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]
Q is reg. L: λm(Q) = λm(L) + γg and λM(Q) = λM(L) + γg
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√
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cu
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SSL with Graphs: Regularized Harmonic
Functions
Larger implications of random walks

random walk relates to commute distance

which should satisfy

(?) Vertices in the same cluster of the graph have a small
commute distance, whereas two vertices in different clusters of
the graph have a large commute distance.

Do we have this property for HS? What if N → ∞?

Luxburg/Radl/Hein: Getting lost in space: Large sample analysis of
the commute distance http://www.informatik.uni-hamburg.de/ML/contents/
people/luxburg/publications/LuxburgRadlHein2010_PaperAndSupplement.pdf

Solutions? 1) γg 2) amplified commute distance 3) Lp . . .

The goal of these solutions: make them remember!
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SSL with Graphs: Out of sample extension

Both MinCut and HFS only inferred the labels on unlabeled
data.

They are

transductive.

What if a new point xnl+nu+1 arrives? also called out-of-sample extension

Option 1) Add it to the graph and recompute HFS.

Option 2) Make the algorithms inductive!

Allow to be defined everywhere: f : X 7→ R
Allow f (xi) 6= yi . Why? To deal with noise.

Solution: Manifold Regularization
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