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SSL with Graphs: Manifold Regularization
General (S)SL objective:

min
f

nl∑
i

V (xi , yi , f (xi)) + λΩ(f )

Want to control f , also for the out-of-sample data, i.e.,
everywhere.

Ω(f ) = λ2fTLf + λ1

∫
x∈X

f (x)2 dx

For general kernels:

min
f ∈HK

nl∑
i

V (xi , yi , f (xi)) + λ1‖f ‖2K + λ2fTLf
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SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization

The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) =

(y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) =

max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector Machines

Michal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Manifold Regularization

f ? = arg min
f ∈HK

nl∑
i

V (xi , yi , f ) + λ1‖f ‖2K + λ2fTLf

Representer theorem for manifold regularization
The minimizer f ? has a finite expansion of the form

f ?(x) =
nl+nu∑
i=1

αiK(x, xi)

V (x, y , f ) = (y − f (x))2

LapRLS Laplacian Regularized Least Squares

V (x, y , f ) = max (0, 1− yf (x))

LapSVM Laplacian Support Vector MachinesMichal Valko – Graphs in Machine Learning 3/1



SSL with Graphs: Laplacian SVMs

f ? = arg min
f ∈HK

nl∑
i

max (0, 1− yf (x)) + γA‖f ‖2K + γI fTLf

Allows us to learn a function in RKHS, i.e., RBF kernels.

Source: belkin2006manifold<empty citation>
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SSL with Graphs: Laplacian SVMs

Source: belkin2006manifold<empty citation>

Michal Valko – Graphs in Machine Learning 5/1



Checkpoint 1

Semi-supervised learning with graphs:

min
f∈{±1}nl+nu

(∞)

nl∑
i=1

wij (f (xi)− yi)
2 + λ

nl+nu∑
i,j=1

(f (xi)− f (xj))
2

Regularized harmonic Solution:

fu = (Luu + γgI)−1 (Wul fl)
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Checkpoint 2

Unconstrained regularization in general:

f? = min
f∈RN

(f − y)TC(f − y) + fTQf

Out of sample extension: Laplacian SVMs

f ? = arg min
f ∈HK

nl∑
i

max (0, 1− yf (x)) + λ1‖f ‖2K + λ2fTLf
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