

Graphs in Machine Learning

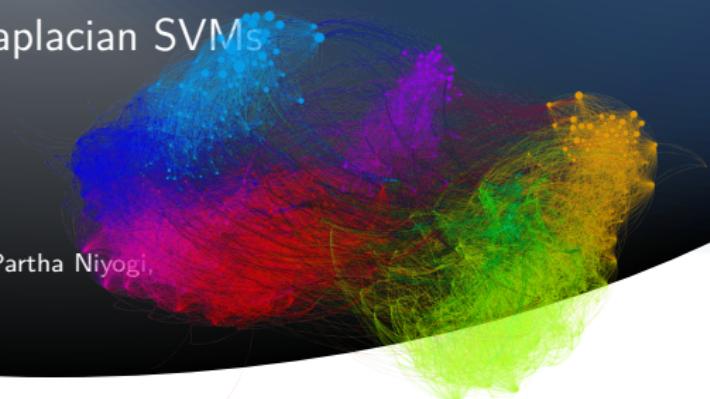
SSL Manifold Regularization

Manifold Regularization and Laplacian SVMs

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Mikhail Belkin, Partha Niyogi,
Olivier Chapelle, Bernhard Schölkopf



SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$\min_f \sum_i^{n_f} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

Want to control f , also for the out-of-sample data, i.e., **everywhere**.

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$\min_f \sum_i^{n_I} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

Want to control f , also for the out-of-sample data, i.e., **everywhere**.

$$\Omega(f) = \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f} + \lambda_1$$

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$\min_f \sum_i^{n_f} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

Want to control f , also for the out-of-sample data, i.e., **everywhere**.

$$\Omega(f) = \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f} + \lambda_1 \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^2 d\mathbf{x}$$

SSL with Graphs: Manifold Regularization

General (S)SL objective:

$$\min_f \sum_i^{n_f} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(f)$$

Want to control f , also for the out-of-sample data, i.e., **everywhere**.

$$\Omega(f) = \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f} + \lambda_1 \int_{\mathbf{x} \in \mathcal{X}} f(\mathbf{x})^2 d\mathbf{x}$$

For general **kernels**:

$$\min_{f \in \mathcal{H}_K} \sum_i^{n_f} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(x_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 f^T L f$$

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(x_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(x_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(x_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

$$f^*(\mathbf{x}) = \sum_{i=1}^{n_I+n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(\mathbf{x}_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

$$f^*(\mathbf{x}) = \sum_{i=1}^{n_I+n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(\mathbf{x}, y, f) =$$

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(\mathbf{x}_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

$$f^*(\mathbf{x}) = \sum_{i=1}^{n_I+n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(\mathbf{x}, y, f) = (y - f(\mathbf{x}))^2$$

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(x_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

$$f^*(\mathbf{x}) = \sum_{i=1}^{n_I+n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(x, y, f) = (y - f(x))^2$$

LapRLS Laplacian Regularized Least Squares

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(\mathbf{x}_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

$$f^*(\mathbf{x}) = \sum_{i=1}^{n_I+n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(\mathbf{x}, y, f) = (y - f(\mathbf{x}))^2$$

LapRLS Laplacian Regularized Least Squares

$$V(\mathbf{x}, y, f) =$$

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(\mathbf{x}_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

$$f^*(\mathbf{x}) = \sum_{i=1}^{n_I+n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(\mathbf{x}, y, f) = (y - f(\mathbf{x}))^2$$

LapRLS Laplacian Regularized Least Squares

$$V(\mathbf{x}, y, f) = \max(0, 1 - yf(\mathbf{x}))$$

SSL with Graphs: Manifold Regularization

$$f^* = \arg \min_{f \in \mathcal{H}_K} \sum_i^{n_I} V(\mathbf{x}_i, y_i, f) + \lambda_1 \|f\|_K^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Representer theorem for manifold regularization

The minimizer f^* has a **finite** expansion of the form

$$f^*(\mathbf{x}) = \sum_{i=1}^{n_I+n_u} \alpha_i \mathcal{K}(\mathbf{x}, \mathbf{x}_i)$$

$$V(\mathbf{x}, y, f) = (y - f(\mathbf{x}))^2$$

LapRLS Laplacian Regularized Least Squares

$$V(\mathbf{x}, y, f) = \max(0, 1 - yf(\mathbf{x}))$$

SSL with Graphs: Laplacian SVMs

$$f^* = \arg \min_{f \in \mathcal{H}_{\mathcal{K}}} \sum_i^{n_I} \max (0, 1 - y f(\mathbf{x})) + \gamma_A \|f\|_{\mathcal{K}}^2 + \gamma_I \mathbf{f}^T \mathbf{L} \mathbf{f}$$

SSL with Graphs: Laplacian SVMs

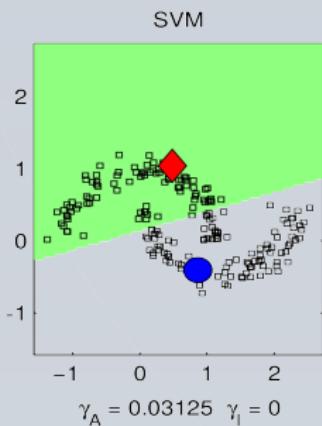
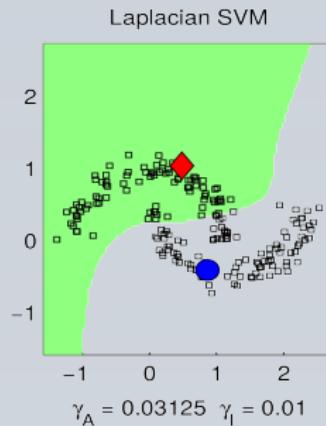
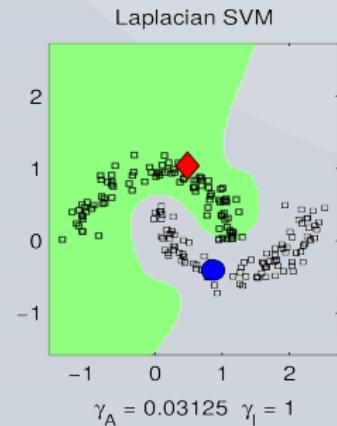
$$f^* = \arg \min_{f \in \mathcal{H}_{\mathcal{K}}} \sum_i^{n_I} \max (0, 1 - y f(\mathbf{x})) + \gamma_A \|f\|_{\mathcal{K}}^2 + \gamma_I \mathbf{f}^T \mathbf{L} \mathbf{f}$$

Allows us to learn a function in **RKHS**, i.e., **RBF** kernels.

SSL with Graphs: Laplacian SVMs

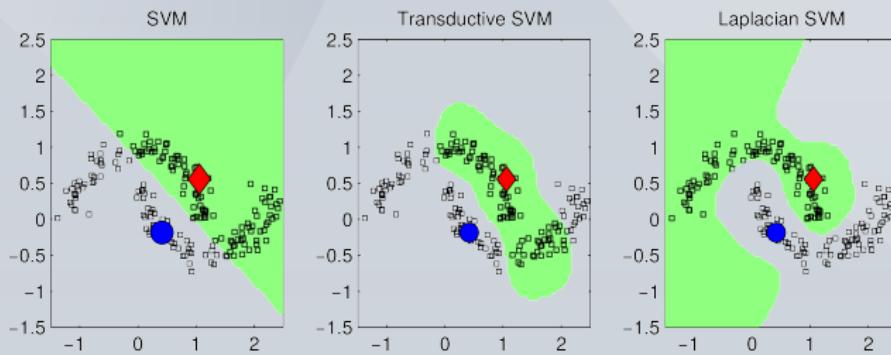
$$f^* = \arg \min_{f \in \mathcal{H}_{\mathcal{K}}} \sum_i^{n_I} \max (0, 1 - y f(\mathbf{x})) + \gamma_A \|f\|_{\mathcal{K}}^2 + \gamma_I \mathbf{f}^T \mathbf{L} \mathbf{f}$$

Allows us to learn a function in **RKHS**, i.e., **RBF** kernels.



Source: [belkin2006manifold](#) <empty citation>

SSL with Graphs: Laplacian SVMs



Source: [belkin2006manifold](#) <empty citation>

Checkpoint 1

Semi-supervised learning with graphs:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} (\infty) \sum_{i=1}^{n_l} w_{ij} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Checkpoint 1

Semi-supervised learning with graphs:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} (\infty) \sum_{i=1}^{n_l} w_{ij} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Regularized harmonic Solution:

$$\mathbf{f}_u = (\mathbf{L}_{uu} + \gamma_g \mathbf{I})^{-1} (\mathbf{W}_{ul} \mathbf{f}_l)$$

Checkpoint 2

Unconstrained regularization in general:

$$\mathbf{f}^* = \min_{\mathbf{f} \in \mathbb{R}^N} (\mathbf{f} - \mathbf{y})^\top \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^\top \mathbf{Q} \mathbf{f}$$

Checkpoint 2

Unconstrained regularization in general:

$$\mathbf{f}^* = \min_{\mathbf{f} \in \mathbb{R}^N} (\mathbf{f} - \mathbf{y})^\top \mathbf{C} (\mathbf{f} - \mathbf{y}) + \mathbf{f}^\top \mathbf{Q} \mathbf{f}$$

Out of sample extension: Laplacian SVMs

$$f^* = \arg \min_{f \in \mathcal{H}_{\mathcal{K}}} \sum_i^{n_f} \max (0, 1 - y f(\mathbf{x})) + \lambda_1 \|f\|_{\mathcal{K}}^2 + \lambda_2 \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>