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SSL with Graphs: Manifold Regularization
General (S)SL objective:

ny
i V(xj,yi, f (xi A
mfmzi: (xi, yi, f (xi)) +

Want to control f, also for the out-of-sample data, i.e.,
everywhere.
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SSL with Graphs: Manifold Regularization
General (S)SL objective:
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i V(xj,yi, f (xi A
mfmzi: (xi, yi, f (xi)) +

Want to control f, also for the out-of-sample data, i.e.,
everywhere.

= Xof Lf+ )\ / f(x)? dx
xeX

For general kernels:

ny

min V(xi,yi, f (%)) + A1 + A9y
feHc ;
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SSL with Graphs: Laplacian SVMs
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Allows us to learn a function in RKHS, i.e., RBF kernels.
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SSL with Graphs: Laplacian SVMs

ny
= argmianax (0,1 —yf (x)) +7a + %
feEHK i

Allows us to learn a function in RKHS, i.e., RBF kernels.
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SSL with Graphs: Laplacian

SVMs

SVM Transductive SVM Laplacian SVM
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Checkpoint 1

Semi-supervised learning with graphs:

min (o0 wi; + A
fe {1}t Z U yl)
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Checkpoint 1

Semi-supervised learning with graphs:

min (o0 wi; + A
fe {1}t Z U )/I)

Regularized harmonic Solution:

fu - (Luu + '\/gI)_l (Wulfl)
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Checkpoint 2

Unconstrained regularization in general:

£ = min (f— y)"C(f —
o (G Ey
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Checkpoint 2

Unconstrained regularization in general:

£ = min (f— y)"C(f —
o (G Ey

Out of sample extension: Laplacian SVMs

n

= argmianax (0,1 —yf (x)) + A1 + Ao

fEH f
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