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This is how children learn!
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Semi-supervised learning (SSL)

SSL problem: definition
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= now it helps now, now it does not (sic)
— provable cases when it helps
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Semi-supervised learning (SSL)

SSL problem: definition

Given {x;}IL, from R? and {y;}"",, with n; < IV, find
{y,-},’-\’:m+1 (transductive) or find f predicting y well beyond
that (inductive).

Some facts about SSL

= assumes that the unlabeled data is useful
= works with data geometry assumptions
— cluster assumption — low-density separation
— smoothness assumptions, generative models, ...
— manifold assumption
= now it helps now, now it does not (sic)
— provable cases when it helps
= inductive or transductive/out-of-sample extension

http://olivier.chapelle.cc/ssl-book /discussion.pdf
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SSL: Overview: Self-Training
SSL:
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SSL: Overview: Self-Training

SSL:
Input: £ = {x;,y;}; and U = {x;};L, \,
Repeat:

= train f using £

= apply f to (some) U and add them to L
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Input: £ = {Xi,}/i},ll and U = {xi}iN:n/+1
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What are the properties of self-training?

= its a wrapper method
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SSL: Overview: Self-Training

SSL:
Input: £ = {x;,y;}; and U = {x;};L, \,
Repeat:

= train f using £

= apply f to (some) U and add them to L

What are the properties of self-training?

= its a wrapper method

= heavily depends on the the internal classifier
= some theory exist for specific classifiers

= nobody uses it anymore (# self supervised)

= errors propagate (unless the clusters are well separated)
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SSL: Self-Training (Good Case)
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SSL: Self-Training (Bad Case)
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SSL(G)

semi-supervised learning with
graphs and harmonic functions

..our running example for learning with graphs



SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph

Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001 /mincut.pdf
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
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MinCut SSL: an idea similar to MinCut clustering
Where is the link?
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Where is the link?

What is the formal statement? We look for f(x) € {£1}

cut =
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
Where is the link?

What is the formal statement? We look for f(x) € {£1}

nl+nu

cut = Z Wij (f(x;) — f(xj))2

ij=1
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
Where is the link?

What is the formal statement? We look for f(x) € {£1}

nl+nu

cut = Z Wij (f(Xi) - f(Xj))2 = Q(f)

ij=1
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SSL with Graphs: MinCut

MinCut SSL: an idea similar to MinCut clustering
Where is the link?

What is the formal statement? We look for f(x) € {£1}

nl+nu

cut = Z Wij (f(Xi) - f(Xj))2 = Q(f)

ij=1

Why (f (x;) — f (x;))? and not |f(x;) — f(x;)|?
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SSL with Graphs: MinCut
We look for f(x) € {£1} to minimize the cut Q(f)

nj+ny

Q) = > wy (F(x) — f(x)))?

ij=1
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nj+ny

) = Y wy (F(x) — f(x)))?

ij=1

Clustering was unsupervised, here we have supervised data.
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SSL with Graphs: MinCut
We look for f(x) € {£1} to minimize the cut Q(f)

nj+ny

Q) = > wy (F(xi) — F(x7))?
ij=1
Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:
nj

i v iy I'vf i
rg}glzi: (i, yin £ (%i)) + A
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SSL with Graphs: MinCut
We look for f(x) € {£1} to minimize the cut Q(f)

nj+ny

) = Y wy (F(x) — f(x)))?

ij=1

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:
ny
i V(x;, yi, f (x; A
rg}glzi: (xi, i £ (%)) +

It would be nice if we match the prediction on labeled data:

V(x,y,f(x))
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SSL with Graphs: MinCut
We look for f(x) € {£1} to minimize the cut Q(f)

nj+ny

) = Y wy (F(x) — f(x)))?

ij=1

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

n

i v iy I'vf i
rg}glzi: (i, yin £ (%i)) + A

It would be nice if we match the prediction on labeled data:

V(x,y, f = 00 Z
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SSL with Graphs: MinCut
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SSL with Graphs: MinCut

Final objective function:

ny
min 00 f(x;) — yi 24
fG{:I:l}n/JrnU ;( ( ) .y)
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SSL with Graphs: MinCut
Final objective function:
ny
min 0 Z (F(xi) — yi) > + A
i=1

fe{£1}mtnu

This is an integer program :(
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Michal Valko — Graphs in Machine Learning 11/1



SSL with Graphs: MinCut

Final objective function:

ny
min 00 f(x;) — yi 24
fG{:I:l}n/JrnU ;( ( ) .y)

This is an integer program :(

Can we solve it?

Michal Valko — Graphs in Machine Learning 11/1



SSL with Graphs: MinCut

Final objective function:

ny
min 00 f(x;) — yi 24
fG{:I:l}n/JrnU ;( ( ) .y)

This is an integer program :(

Can we solve it? Are we happy?

Michal Valko — Graphs in Machine Learning 11/1



SSL with Graphs: MinCut

Final objective function:

ny
min 00 f(x;) — yi 24
fG{:I:l}n/Jr”U ;( ( ) y)

This is an integer program :(

Can we solve it? Are we happy?

O—O0—"0OC0—0C—C0—0-—0
_|_ —

Michal Valko — Graphs in Machine Learning 11/1



SSL with Graphs: MinCut

Final objective function:

ny
min 00 f(x;) — yi 24
fG{:I:l}n/Jr”U ;( ( ) y)

This is an integer program :(

Can we solve it? Are we happy?

O—O0—"0OC0—0C—C0—0-—0
_|_ —

Michal Valko — Graphs in Machine Learning 11/1



SSL with Graphs: MinCut

Final objective function:

ny
min 00 f(x;) — yi 24
fG{:I:l}n/Jr”U ;( ( ) y)

This is an integer program :(

Can we solve it? Are we happy?

O—O0—"0OC0—0C—C0—0-—0
_|_ —

Michal Valko — Graphs in Machine Learning 11/1



SSL with Graphs: MinCut

Final objective function:

ny
min 00 f(x;) — yi 24
fG{:I:l}n/JrnU ;( ( ) .y)

This is an integer program :(

Can we solve it? Are we happy?
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We need a better way to reflect the confidence.
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