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Semi-supervised learning: How is it possible?

This is how children learn! hypothesis
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Semi-supervised learning (SSL)
SSL problem: definition

Given {xi}N
i=1 from Rd and {yi}nl

i=1, with nl � N, find
{yi}N

i=nl+1 (transductive) or find f predicting y well beyond
that (inductive).

Some facts about SSL

• assumes that the unlabeled data is useful
• works with data geometry assumptions

– cluster assumption — low-density separation
– smoothness assumptions, generative models, …
– manifold assumption

• now it helps now, now it does not (sic)
– provable cases when it helps

• inductive or transductive/out-of-sample extension
http://olivier.chapelle.cc/ssl-book/discussion.pdf
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SSL: Overview: Self-Training

SSL: Self-Training

Input: L = {xi , yi}nl
i=1 and U = {xi}N

i=nl+1

Repeat:
• train f using L
• apply f to (some) U and add them to L

What are the properties of self-training?

• its a wrapper method
• heavily depends on the the internal classifier
• some theory exist for specific classifiers
• nobody uses it anymore (6= self supervised)
• errors propagate (unless the clusters are well separated)
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SSL: Self-Training (Good Case)

Source: chapelle2006semi-supervised<empty citation>
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SSL: Self-Training (Bad Case)

Source: chapelle2006semi-supervised<empty citation>
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SSL(G)
semi-supervised learning with
graphs and harmonic functions
…our running example for learning with graphs



SSL with Graphs: Prehistory
Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph
Mincuts
http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf

*following some insights from vision research in 1980s

x1

x2
x3
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SSL with Graphs: MinCut

x1

x2
x3

MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact
What is the formal statement? We look for f (x) ∈ {±1}

cut =
nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2 = Ω(f )

Why (f (xi)− f (xj))
2 and not |f (xi)− f (xj)|? It does not matter.
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SSL with Graphs: MinCut
We look for f (x) ∈ {±1} to minimize the cut Ω(f)

Ω(f) =
nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

min
w,b

nl∑
i

V (xi , yi , f (xi)) + λΩ(f)

It would be nice if we match the prediction on labeled data:

V (x, y , f (x)) =
nl∑

i=1

(f (xi)− yi)
2
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SSL with Graphs: MinCut

Final objective function:

min
f∈{±1}nl+nu

∞
nl∑

i=1

(f (xi)− yi)
2 + λ

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

This is an integer program :(

Can we solve it? It still just MinCut. Are we happy?

+ −
There are six solutions. All equivalent.

We need a better way to reflect the confidence.
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