

Graphs in Machine Learning

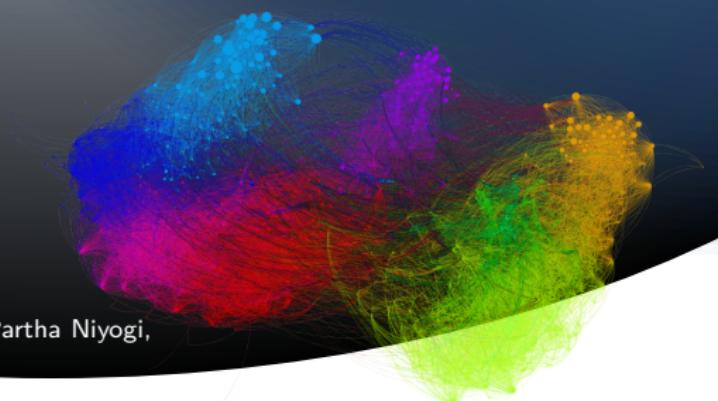
Semi-Supervised Learning Introduction

Why and When SSL Helps

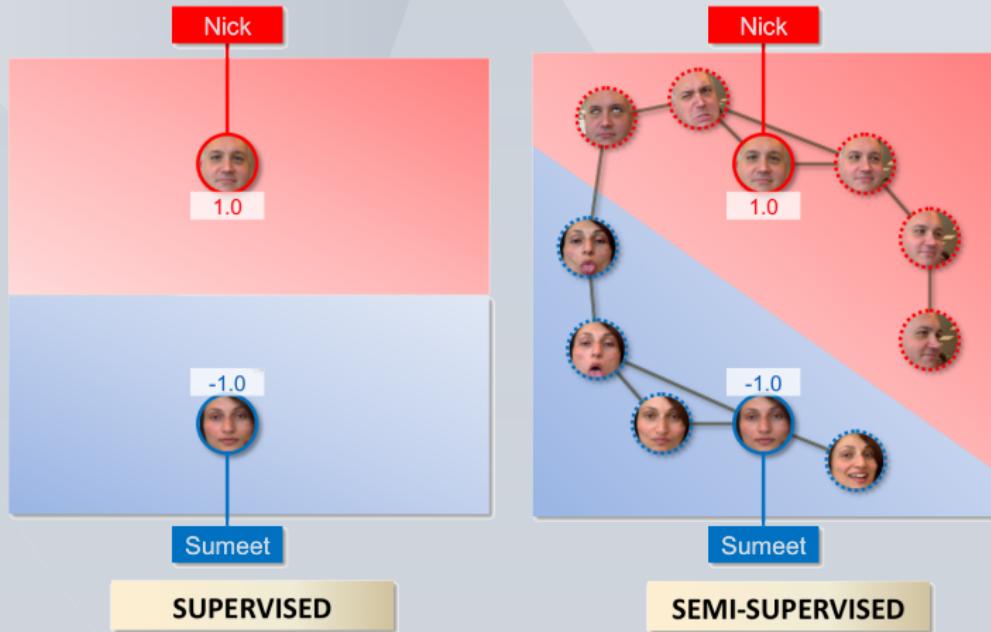
Michal Valko

Inria & ENS Paris-Saclay, MVA

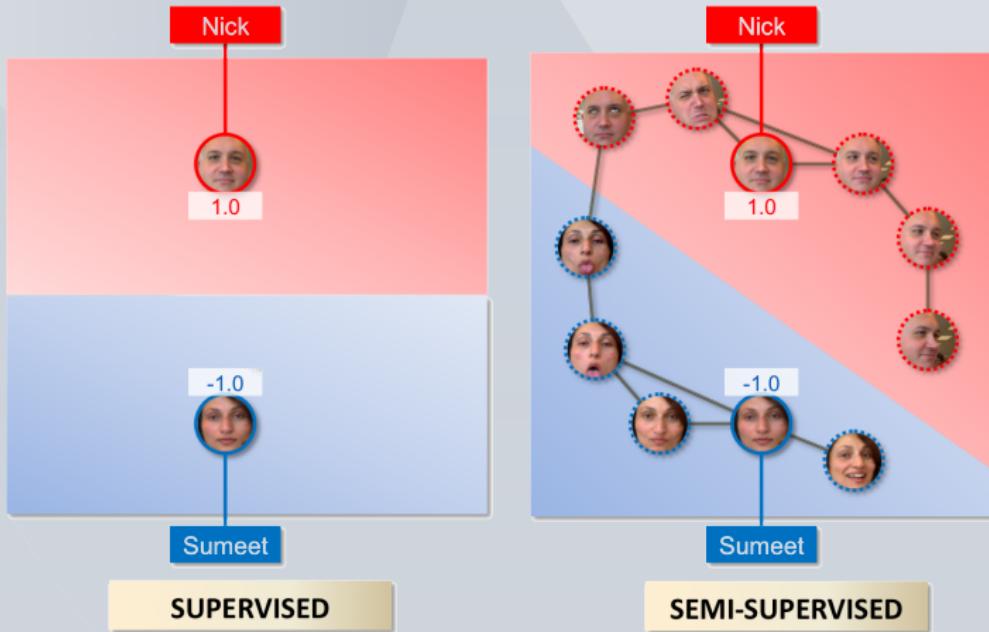
material by: Mikhail Belkin, Partha Niyogi,
K. Schölkopf



Semi-supervised learning: How is it possible?



Semi-supervised learning: How is it possible?



This is how children learn! hypothesis

Semi-supervised learning (SSL)

SSL problem: definition

Semi-supervised learning (SSL)

SSL problem: definition

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^N$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Semi-supervised learning (SSL)

SSL problem: definition

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^N$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Some facts about SSL

- assumes that the unlabeled data is useful

Semi-supervised learning (SSL)

SSL problem: definition

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^N$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Some facts about SSL

- assumes that the unlabeled data is useful
- works with data geometry assumptions
 - cluster assumption — low-density separation
 - smoothness assumptions, generative models, ...
 - manifold assumption

Semi-supervised learning (SSL)

SSL problem: definition

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^N$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Some facts about SSL

- assumes that the unlabeled data is useful
- works with data geometry assumptions
 - cluster assumption — low-density separation
 - smoothness assumptions, generative models, ...
 - manifold assumption
- now it helps now, now it does not (sic)
 - provable cases when it helps

Semi-supervised learning (SSL)

SSL problem: definition

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d and $\{y_i\}_{i=1}^{n_l}$, with $n_l \ll N$, find $\{y_i\}_{i=n_l+1}^N$ (**transductive**) or find f predicting y well beyond that (**inductive**).

Some facts about SSL

- assumes that the unlabeled data is useful
- works with data geometry assumptions
 - cluster assumption — low-density separation
 - smoothness assumptions, generative models, ...
 - manifold assumption
- now it helps now, now it does not (sic)
 - provable cases when it helps
- inductive or transductive/out-of-sample extension

<http://olivier.chapelle.cc/ssl-book/discussion.pdf>

SSL: Overview: Self-Training

SSL: Self-Training

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^N$

Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^N$

Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- its a wrapper method

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^N$

Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- its a wrapper method
- heavily depends on the the internal classifier

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^N$

Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- it's a wrapper method
- heavily depends on the internal classifier
- some theory exists for specific classifiers

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^N$

Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

- it's a wrapper method
- heavily depends on the internal classifier
- some theory exists for specific classifiers
- nobody uses it anymore (\neq self-supervised)

SSL: Overview: Self-Training

SSL: Self-Training

Input: $\mathcal{L} = \{\mathbf{x}_i, y_i\}_{i=1}^{n_l}$ and $\mathcal{U} = \{\mathbf{x}_i\}_{i=n_l+1}^N$

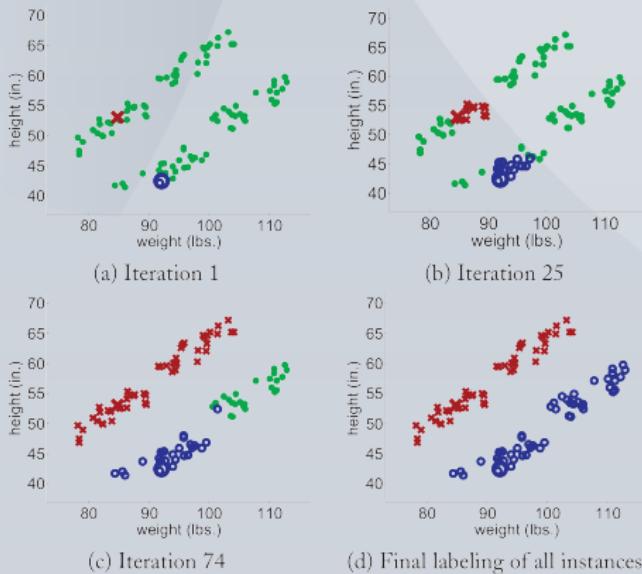
Repeat:

- train f using \mathcal{L}
- apply f to (some) \mathcal{U} and add them to \mathcal{L}

What are the properties of self-training?

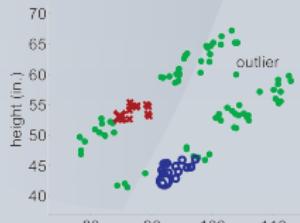
- it's a wrapper method
- heavily depends on the internal classifier
- some theory exists for specific classifiers
- nobody uses it anymore (\neq self supervised)
- errors propagate (unless the clusters are well separated)

SSL: Self-Training (Good Case)

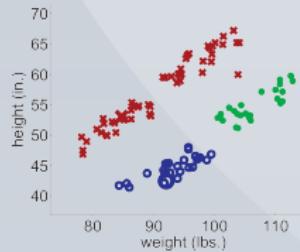


Source: chapelle2006semi-supervised <empty citation>

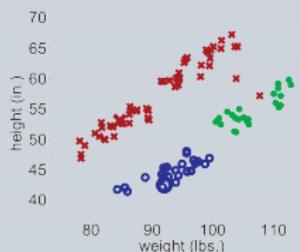
SSL: Self-Training (Bad Case)



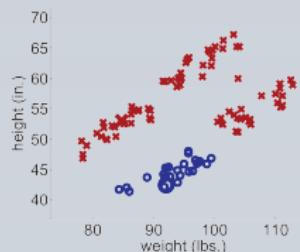
(a)



(b)



(c)



(d)

Source: [chapelle2006semi-supervised](#) <empty citation>

SSL(\mathcal{G})

semi-supervised learning with
graphs and harmonic functions

...our running example for learning with graphs

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts

<http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf>

SSL with Graphs: Prehistory

Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts

<http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf>

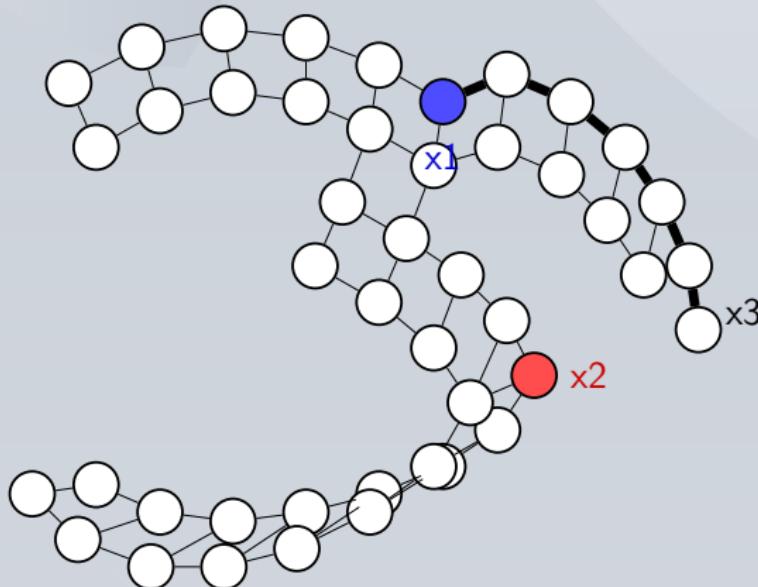
*following some insights from vision research in 1980s

SSL with Graphs: Prehistory

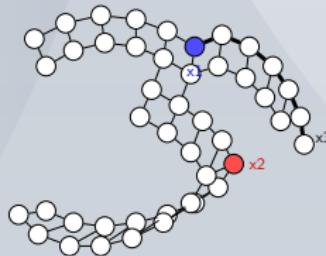
Blum/Chawla: Learning from Labeled and Unlabeled Data using Graph Mincuts

<http://www.aladdin.cs.cmu.edu/papers/pdfs/y2001/mincut.pdf>

*following some insights from vision research in 1980s

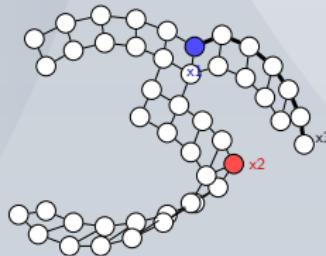


SSL with Graphs: MinCut



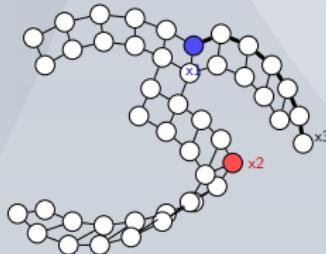
MinCut SSL: an idea similar to MinCut clustering

SSL with Graphs: MinCut



MinCut SSL: an idea similar to MinCut clustering
Where is the link?

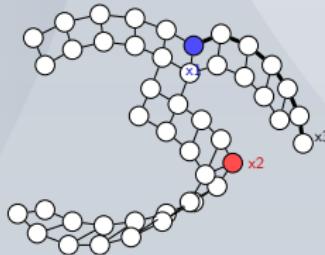
SSL with Graphs: MinCut



MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact

SSL with Graphs: MinCut

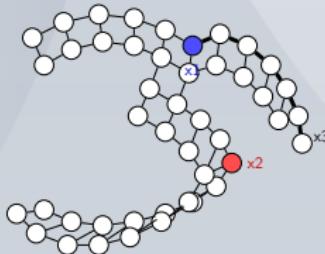


MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact

What is the formal statement?

SSL with Graphs: MinCut



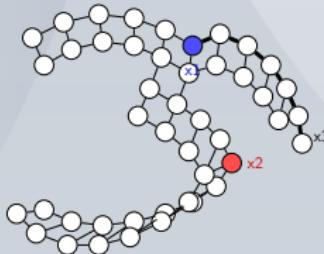
MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

cut =

SSL with Graphs: MinCut



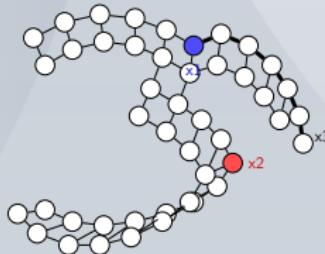
MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\text{cut} = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

SSL with Graphs: MinCut



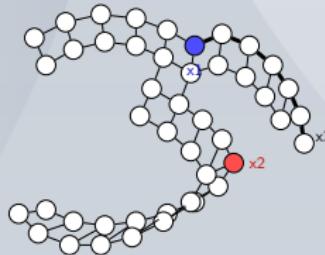
MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\text{cut} = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \Omega(f)$$

SSL with Graphs: MinCut



MinCut SSL: an idea similar to MinCut clustering

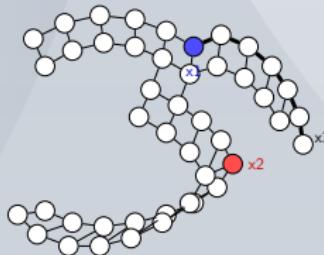
Where is the link? connected classes, not necessarily compact

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\text{cut} = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \Omega(f)$$

Why $(f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$ and not $|f(\mathbf{x}_i) - f(\mathbf{x}_j)|$?

SSL with Graphs: MinCut



MinCut SSL: an idea similar to MinCut clustering

Where is the link? connected classes, not necessarily compact

What is the formal statement? We look for $f(\mathbf{x}) \in \{\pm 1\}$

$$\text{cut} = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \Omega(f)$$

Why $(f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$ and not $|f(\mathbf{x}_i) - f(\mathbf{x}_j)|$? It does not matter.

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Clustering was unsupervised, here we have supervised data.

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

$$\min_{\mathbf{w}, b} \sum_i^{n_l} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(\mathbf{f})$$

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

$$\min_{\mathbf{w}, b} \sum_i^{n_l} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(\mathbf{f})$$

It would be nice if we match the prediction on labeled data:

$$V(\mathbf{x}, y, f(\mathbf{x}))$$

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

$$\min_{\mathbf{w}, b} \sum_i^{n_l} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(\mathbf{f})$$

It would be nice if we match the prediction on labeled data:

$$V(\mathbf{x}, y, f(\mathbf{x})) = \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2$$

SSL with Graphs: MinCut

We look for $f(\mathbf{x}) \in \{\pm 1\}$ to minimize the cut $\Omega(\mathbf{f})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

Clustering was unsupervised, here we have supervised data.

Recall the general objective-function framework:

$$\min_{\mathbf{w}, b} \sum_i^{n_l} V(\mathbf{x}_i, y_i, f(\mathbf{x}_i)) + \lambda \Omega(\mathbf{f})$$

It would be nice if we match the prediction on labeled data:

$$V(\mathbf{x}, y, f(\mathbf{x})) = \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2$$

SSL with Graphs: MinCut

SSL with Graphs: MinCut

Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

SSL with Graphs: MinCut

Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

SSL with Graphs: MinCut

Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it?

SSL with Graphs: MinCut

Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it? It still just MinCut.

SSL with Graphs: MinCut

Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it? It still just MinCut.

Are we happy?

SSL with Graphs: MinCut

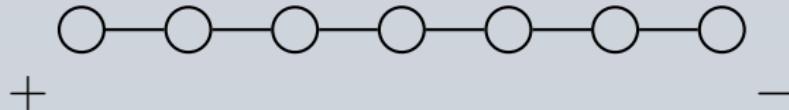
Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it? It still just MinCut.

Are we happy?



SSL with Graphs: MinCut

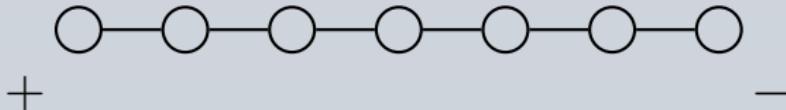
Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it? It still just MinCut.

Are we happy?



There are six solutions.

SSL with Graphs: MinCut

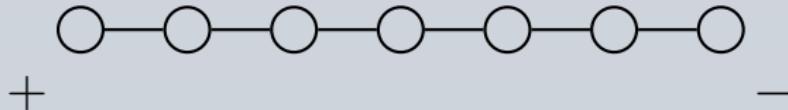
Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it? It still just MinCut.

Are we happy?



There are six solutions. All equivalent.

SSL with Graphs: MinCut

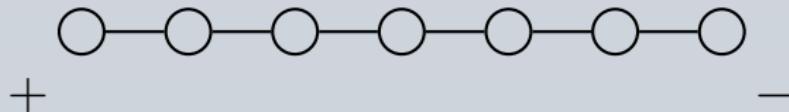
Final objective function:

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

This is an integer program :(

Can we solve it? It still just MinCut.

Are we happy?



There are six solutions. All equivalent.

We need a better way to reflect the confidence.

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>