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SSL with Graphs: Harmonic Functions
Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian
Fields and Harmonic Functions (ICML 2013)
http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a unique solution.
Idea 2: Find a smooth one. (harmonic solution)
Harmonic SSL
1): As before, we constrain f to match the supervised data:

f (xi) = yi ∀i ∈ {1, . . . , nl}

2): We enforce the solution f to be harmonic:

f (xi) =

∑
i∼j f (xj)wij∑

i∼j wij
∀i ∈ {nl + 1, . . . , nu + nl}
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SSL with Graphs: Harmonic Functions
The harmonic solution is obtained from the mincut one …

min
f∈{±1}nl+nu

∞
nl∑

i=1

(f (xi)− yi)
2 + λ

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

…if we just relax the integer constraints to be real …

min
f∈Rnl+nu

∞
nl∑

i=1

(f (xi)− yi)
2 + λ

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

…or equivalently (note that f (xi) = fi) …

min
f∈Rnl+nu

nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2

s.t. yi = f (xi) ∀i = 1, . . . , nl
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SSL with Graphs: Harmonic Functions

Properties of the relaxation from ±1 to R

• there is a closed form solution for f
• this solution is unique
• globally optimal

• f (xi) may not be discrete
– but we can threshold it

• electric-network interpretation
• random-walk interpretation
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SSL with Graphs: Harmonic Functions

Rij =
1

wij

+1 volt1

0

(a) The electric network interpretation

1

0

i

(b) The random walk interpretation

Figure from zhu2003semi-supervised<empty citation>

Random walk interpretation:
1) start from the vertex you want to label and randomly walk
2) P(j|i) = wij∑

k wik
≡ P = D−1W

3) finish when a labeled vertex is hit
absorbing random walk

fi = probability of reaching a positive labeled vertex
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SSL with Graphs: Harmonic Functions

How to compute HS?

Option A: iteration/propagation

Step 1: Set f (xi) = yi for i = 1, . . . , nl
Step 2: Propagate iteratively (only for unlabeled)

f (xi)←
∑

i∼j f (xj)wij∑
i∼j wij

∀i ∈ {nl + 1, . . . , nu + nl}

Properties:

• this will converge to the harmonic solution
• we can set the initial values for unlabeled nodes arbitrarily
• an interesting option for large-scale data
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SSL with Graphs: Harmonic Functions

How to compute HS? Option B: Closed form solution

Define f = (f (x1), . . . , f (xnl+nu)) = (f1, . . . , fnl+nu)

Ω(f) =
nl+nu∑
i,j=1

wij (f (xi)− f (xj))
2 = fTLf

L is a (nl + nu)× (nl + nu) matrix:

L =

[
Lll Llu
Lul Luu

]
How to compute this constrained minimization problem?

Yes, Lagrangian multipliers are an option, but . . .
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SSL with Graphs: Harmonic Functions

Let us compute harmonic solution using harmonic property!

(Lf)u = 0u

In matrix notation[
Lll Llu
Lul Luu

] [
fl
fu

]
=

[
. . .
0u

]
fl is constrained to be yl and for fu ……

Lul fl + Luufu = 0u

…from which we get

fu = L−1
uu (−Lul fl) = L−1

uu (Wul fl). Lul = 0−Wul

Note that fu does not depend on Lll .
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SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

fu = L−1
uu (−Lul fl)

= L−1
uu (Wul fl)

Note P = D−1W and
L−1

uu = (Duu(I− Puu))
−1 = (I− Puu)

−1D−1
uu

fu = (I− Puu)
−1Pul fl .

Split the equation into +ve & -ve part:
fi =

(I− Puu)
−1
iu Pul fl

=
∑

j:yj=1

(I− Puu)
−1
iu Puj︸ ︷︷ ︸

p(+1)
i

−
∑

j:yj=−1

(I− Puu)
−1
iu Puj︸ ︷︷ ︸

p(−1)
i

= p(+1)
i − p(−1)

i
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