

Graphs in Machine Learning

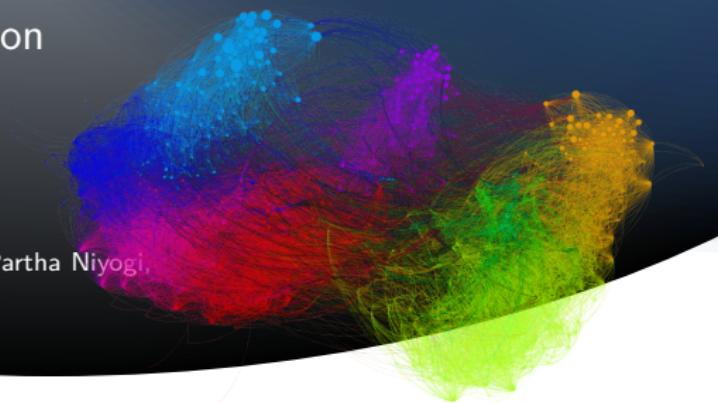
SSL with Graphs: Harmonic Functions

Gaussian Random Fields Solution

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Mikhail Belkin, Partha Niyogi,
Olivier Chapelle, Bernhard Schölkopf



SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a **unique** solution.

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a **unique** solution.

Idea 2: Find a smooth one.

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a **unique** solution.

Idea 2: Find a smooth one. (**harmonic** solution)

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a **unique** solution.

Idea 2: Find a smooth one. (**harmonic** solution)

Harmonic SSL

1): As before, we constrain f to match the supervised data:

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a **unique** solution.

Idea 2: Find a smooth one. (**harmonic** solution)

Harmonic SSL

1): As before, we constrain f to match the supervised data:

$$f(\mathbf{x}_i) = y_i \quad \forall i \in \{1, \dots, n_I\}$$

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a **unique** solution.

Idea 2: Find a smooth one. (**harmonic** solution)

Harmonic SSL

1): As before, we constrain f to match the supervised data:

$$f(\mathbf{x}_i) = y_i \quad \forall i \in \{1, \dots, n_I\}$$

2): We enforce the solution f to be harmonic:

SSL with Graphs: Harmonic Functions

Zhu/Ghahramani/Lafferty: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (ICML 2013)

<http://mlg.eng.cam.ac.uk/zoubin/papers/zgl.pdf>

*a seminal paper that convinced people to use graphs for SSL

Idea 1: Look for a **unique** solution.

Idea 2: Find a smooth one. (**harmonic** solution)

Harmonic SSL

1): As before, we constrain f to match the supervised data:

$$f(\mathbf{x}_i) = y_i \quad \forall i \in \{1, \dots, n_I\}$$

2): We enforce the solution f to be harmonic:

$$f(\mathbf{x}_i) = \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_I + 1, \dots, n_u + n_I\}$$

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...if we just relax the integer constraints to be real ...

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...if we just relax the integer constraints to be real ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...if we just relax the integer constraints to be real ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...or equivalently (note that $f(\mathbf{x}_i) = f_i$) ...

SSL with Graphs: Harmonic Functions

The harmonic solution is obtained from the mincut one ...

$$\min_{\mathbf{f} \in \{\pm 1\}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...if we just relax the integer constraints to be real ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l+n_u}} \infty \sum_{i=1}^{n_l} (f(\mathbf{x}_i) - y_i)^2 + \lambda \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

...or equivalently (note that $f(\mathbf{x}_i) = f_i$) ...

$$\min_{\mathbf{f} \in \mathbb{R}^{n_l+n_u}} \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

$$s.t. \quad y_i = f(\mathbf{x}_i) \quad \forall i = 1, \dots, n_l$$

SSL with Graphs: Harmonic Functions

Properties of the relaxation from ± 1 to \mathbb{R}

- there is a closed form solution for f
- this solution is unique
- globally optimal

SSL with Graphs: Harmonic Functions

Properties of the relaxation from ± 1 to \mathbb{R}

- there is a closed form solution for f
- this solution is unique
- globally optimal
- $f(x_i)$ may not be discrete
 - but we can threshold it

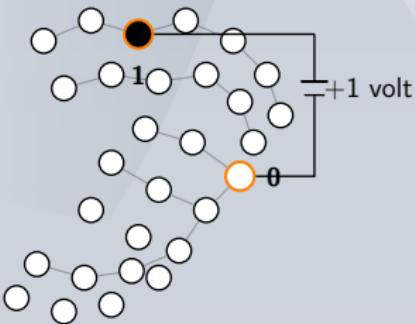
SSL with Graphs: Harmonic Functions

Properties of the relaxation from ± 1 to \mathbb{R}

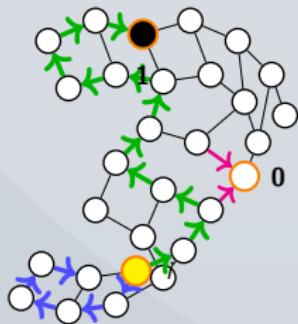
- there is a closed form solution for f
- this solution is unique
- globally optimal
- $f(x_i)$ may not be discrete
 - but we can threshold it
- electric-network interpretation
- random-walk interpretation

SSL with Graphs: Harmonic Functions

$$R_{ij} = \frac{1}{w_{ij}}$$



(a) The electric network interpretation

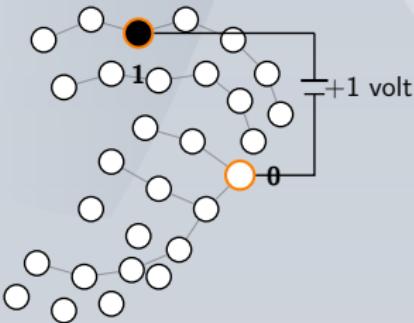


(b) The random walk interpretation

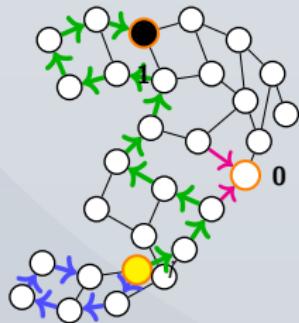
Figure from [zhu2003semi-supervised](#)<empty citation>

SSL with Graphs: Harmonic Functions

$$R_{ij} = \frac{1}{w_{ij}}$$



(a) The electric network interpretation



(b) The random walk interpretation

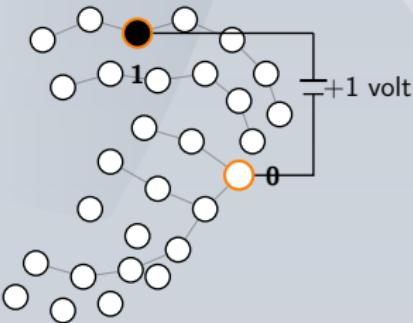
Figure from [zhu2003semi-supervised](#)<empty citation>

Random walk interpretation:

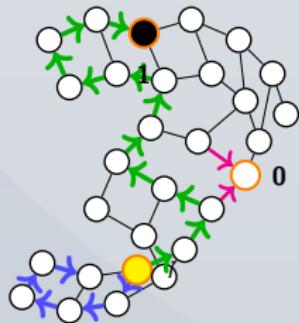
- 1) start from the vertex you want to label and randomly walk

SSL with Graphs: Harmonic Functions

$$R_{ij} = \frac{1}{w_{ij}}$$



(a) The electric network interpretation



(b) The random walk interpretation

Figure from [zhu2003semi-supervised](#)<empty citation>

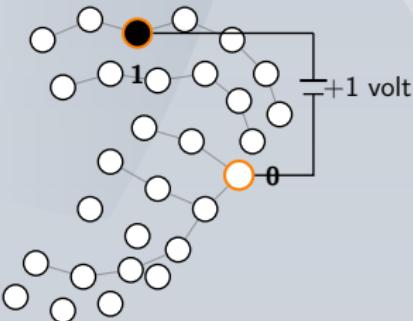
Random walk interpretation:

1) start from the vertex you want to label and randomly walk

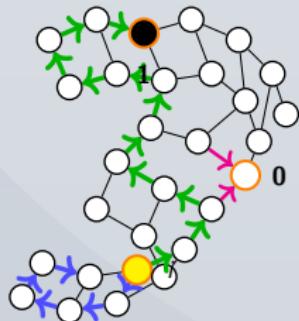
$$2) P(j|i) = \frac{w_{ij}}{\sum_k w_{ik}}$$

SSL with Graphs: Harmonic Functions

$$R_{ij} = \frac{1}{w_{ij}}$$



(a) The electric network interpretation



(b) The random walk interpretation

Figure from [zhu2003semi-supervised](#)<empty citation>

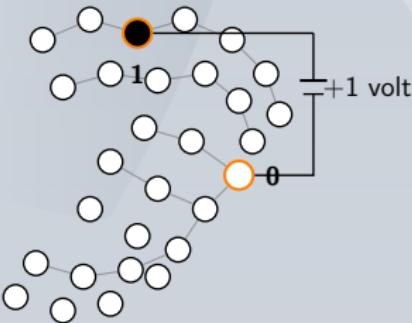
Random walk interpretation:

1) start from the vertex you want to label and randomly walk

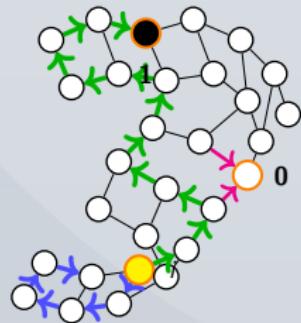
$$2) P(j|i) = \frac{w_{ij}}{\sum_k w_{ik}} \quad \equiv \quad \mathbf{P} = \mathbf{D}^{-1} \mathbf{W}$$

SSL with Graphs: Harmonic Functions

$$R_{ij} = \frac{1}{w_{ij}}$$



(a) The electric network interpretation



(b) The random walk interpretation

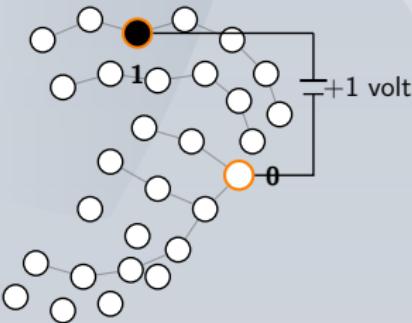
Figure from [zhu2003semi-supervised](#)<empty citation>

Random walk interpretation:

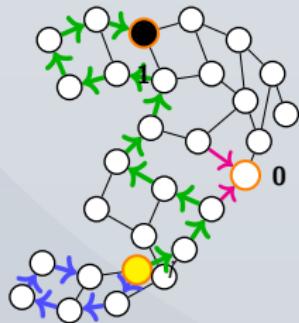
- 1) start from the vertex you want to label and randomly walk
- 2) $P(j|i) = \frac{w_{ij}}{\sum_k w_{ik}} \equiv \mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$
- 3) finish when a labeled vertex is hit

SSL with Graphs: Harmonic Functions

$$R_{ij} = \frac{1}{w_{ij}}$$



(a) The electric network interpretation



(b) The random walk interpretation

Figure from zhu2003semi-supervised<empty citation>

Random walk interpretation:

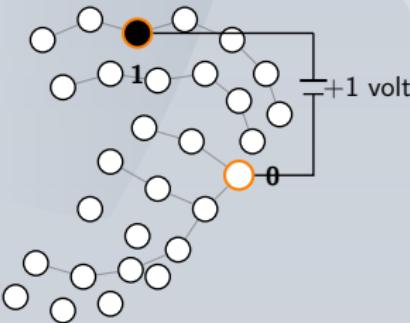
- 1) start from the vertex you want to label and randomly walk
- 2) $P(j|i) = \frac{w_{ij}}{\sum_k w_{ik}} \equiv \mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$
- 3) finish when a labeled vertex is hit

absorbing random walk

$$f_i =$$

SSL with Graphs: Harmonic Functions

$$R_{ij} = \frac{1}{w_{ij}}$$



(a) The electric network interpretation

(b) The random walk interpretation

Figure from zhu2003semi-supervised<empty citation>

Random walk interpretation:

- 1) start from the vertex you want to label and randomly walk
- 2) $P(j|i) = \frac{w_{ij}}{\sum_k w_{ik}} \equiv \mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$
- 3) finish when a labeled vertex is hit

absorbing random walk

f_i = probability of reaching a positive labeled vertex

SSL with Graphs: Harmonic Functions

How to compute HS?

SSL with Graphs: Harmonic Functions

How to compute HS? **Option A:** iteration

SSL with Graphs: Harmonic Functions

How to compute HS? **Option A:** iteration/propagation

SSL with Graphs: Harmonic Functions

How to compute HS? **Option A:** iteration/propagation

Step 1: Set $f(\mathbf{x}_i) = y_i$ for $i = 1, \dots, n$

SSL with Graphs: Harmonic Functions

How to compute HS? **Option A:** iteration/propagation

Step 1: Set $f(\mathbf{x}_i) = y_i$ for $i = 1, \dots, n_l$

Step 2: Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

SSL with Graphs: Harmonic Functions

How to compute HS? **Option A:** iteration/propagation

Step 1: Set $f(\mathbf{x}_i) = y_i$ for $i = 1, \dots, n_l$

Step 2: Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

Properties:

- this will converge to the harmonic solution

SSL with Graphs: Harmonic Functions

How to compute HS? **Option A:** iteration/propagation

Step 1: Set $f(\mathbf{x}_i) = y_i$ for $i = 1, \dots, n_l$

Step 2: Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily

SSL with Graphs: Harmonic Functions

How to compute HS? **Option A:** iteration/propagation

Step 1: Set $f(\mathbf{x}_i) = y_i$ for $i = 1, \dots, n_l$

Step 2: Propagate iteratively (only for unlabeled)

$$f(\mathbf{x}_i) \leftarrow \frac{\sum_{i \sim j} f(\mathbf{x}_j) w_{ij}}{\sum_{i \sim j} w_{ij}} \quad \forall i \in \{n_l + 1, \dots, n_u + n_l\}$$

Properties:

- this will converge to the harmonic solution
- we can set the initial values for unlabeled nodes arbitrarily
- an interesting option for large-scale data

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u}))$

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$

$$\Omega(\mathbf{f}) =$$

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2$$

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

\mathbf{L} is a $(n_l + n_u) \times (n_l + n_u)$ matrix:

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

\mathbf{L} is a $(n_l + n_u) \times (n_l + n_u)$ matrix:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix}$$

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

\mathbf{L} is a $(n_l + n_u) \times (n_l + n_u)$ matrix:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix}$$

How to compute this **constrained** minimization problem?

SSL with Graphs: Harmonic Functions

How to compute HS? **Option B:** Closed form solution

Define $\mathbf{f} = (f(\mathbf{x}_1), \dots, f(\mathbf{x}_{n_l+n_u})) = (f_1, \dots, f_{n_l+n_u})$

$$\Omega(\mathbf{f}) = \sum_{i,j=1}^{n_l+n_u} w_{ij} (f(\mathbf{x}_i) - f(\mathbf{x}_j))^2 = \mathbf{f}^\top \mathbf{L} \mathbf{f}$$

\mathbf{L} is a $(n_l + n_u) \times (n_l + n_u)$ matrix:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix}$$

How to compute this **constrained** minimization problem?

Yes, Lagrangian multipliers are an option, but . . .

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

$$(\mathbf{L}\mathbf{f})_u = \mathbf{0}_u$$

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

$$(\mathbf{L}\mathbf{f})_u = \mathbf{0}_u$$

In matrix notation

$$\begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix} \begin{bmatrix} \mathbf{f}_l \\ \mathbf{f}_u \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_u \end{bmatrix}$$

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

$$(\mathbf{L}\mathbf{f})_u = \mathbf{0}_u$$

In matrix notation

$$\begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix} \begin{bmatrix} \mathbf{f}_l \\ \mathbf{f}_u \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_u \end{bmatrix}$$

\mathbf{f}_l is constrained to be \mathbf{y}_l and for \mathbf{f}_u

$$\mathbf{L}_{ul}\mathbf{f}_l + \mathbf{L}_{uu}\mathbf{f}_u = \mathbf{0}_u$$

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

$$(\mathbf{L}\mathbf{f})_u = \mathbf{0}_u$$

In matrix notation

$$\begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix} \begin{bmatrix} \mathbf{f}_l \\ \mathbf{f}_u \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_u \end{bmatrix}$$

\mathbf{f}_l is constrained to be \mathbf{y}_l and for \mathbf{f}_u

$$\mathbf{L}_{ul}\mathbf{f}_l + \mathbf{L}_{uu}\mathbf{f}_u = \mathbf{0}_u$$

...from which we get

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l)$$

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

$$(\mathbf{L}\mathbf{f})_u = \mathbf{0}_u$$

In matrix notation

$$\begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix} \begin{bmatrix} \mathbf{f}_l \\ \mathbf{f}_u \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_u \end{bmatrix}$$

\mathbf{f}_l is constrained to be \mathbf{y}_l and for \mathbf{f}_u

$$\mathbf{L}_{ul}\mathbf{f}_l + \mathbf{L}_{uu}\mathbf{f}_u = \mathbf{0}_u$$

...from which we get

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l).$$

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

$$(\mathbf{L}\mathbf{f})_u = \mathbf{0}_u$$

In matrix notation

$$\begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix} \begin{bmatrix} \mathbf{f}_l \\ \mathbf{f}_u \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_u \end{bmatrix}$$

\mathbf{f}_l is constrained to be \mathbf{y}_l and for \mathbf{f}_u

$$\mathbf{L}_{ul}\mathbf{f}_l + \mathbf{L}_{uu}\mathbf{f}_u = \mathbf{0}_u$$

...from which we get

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l). \quad \mathbf{L}_{ul} = \mathbf{0} - \mathbf{W}_{ul}$$

SSL with Graphs: Harmonic Functions

Let us compute **harmonic** solution using **harmonic** property!

$$(\mathbf{L}\mathbf{f})_u = \mathbf{0}_u$$

In matrix notation

$$\begin{bmatrix} \mathbf{L}_{ll} & \mathbf{L}_{lu} \\ \mathbf{L}_{ul} & \mathbf{L}_{uu} \end{bmatrix} \begin{bmatrix} \mathbf{f}_l \\ \mathbf{f}_u \end{bmatrix} = \begin{bmatrix} \dots \\ \mathbf{0}_u \end{bmatrix}$$

\mathbf{f}_l is constrained to be \mathbf{y}_l and for \mathbf{f}_u

$$\mathbf{L}_{ul}\mathbf{f}_l + \mathbf{L}_{uu}\mathbf{f}_u = \mathbf{0}_u$$

...from which we get

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l). \quad \mathbf{L}_{ul} = \mathbf{0} - \mathbf{W}_{ul}$$

Note that \mathbf{f}_u does not depend on \mathbf{L}_{ll} .

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l)$$

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l)$$

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l)$$

Note $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ and

$$\mathbf{L}_{uu}^{-1} = (\mathbf{D}_{uu}(\mathbf{I} - \mathbf{P}_{uu}))^{-1} = (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{D}_{uu}^{-1}$$

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l)$$

Note $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ and

$$\mathbf{L}_{uu}^{-1} = (\mathbf{D}_{uu}(\mathbf{I} - \mathbf{P}_{uu}))^{-1} = (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{D}_{uu}^{-1}$$

$$\mathbf{f}_u = (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{P}_{ul}\mathbf{f}_l.$$

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l)$$

Note $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ and

$$\begin{aligned}\mathbf{L}_{uu}^{-1} &= (\mathbf{D}_{uu}(\mathbf{I} - \mathbf{P}_{uu}))^{-1} = (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{D}_{uu}^{-1} \\ \mathbf{f}_u &= (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{P}_{ul}\mathbf{f}_l.\end{aligned}$$

Split the equation into +ve & -ve part:

$$f_i = (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1}\mathbf{P}_{ul}\mathbf{f}_l$$

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l)$$

Note $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ and

$$\begin{aligned}\mathbf{L}_{uu}^{-1} &= (\mathbf{D}_{uu}(\mathbf{I} - \mathbf{P}_{uu}))^{-1} = (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{D}_{uu}^{-1} \\ \mathbf{f}_u &= (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{P}_{ul}\mathbf{f}_l.\end{aligned}$$

Split the equation into +ve & -ve part:

$$\begin{aligned}f_i &= (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1}\mathbf{P}_{ul}\mathbf{f}_l \\ &= \underbrace{\sum_{j:y_j=1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1}\mathbf{P}_{uj}}_{p_i^{(+1)}} - \underbrace{\sum_{j:y_j=-1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1}\mathbf{P}_{uj}}_{p_i^{(-1)}}\end{aligned}$$

SSL with Graphs: Harmonic Functions

Can we see that this calculates the probability of a random walk?

$$\mathbf{f}_u = \mathbf{L}_{uu}^{-1}(-\mathbf{L}_{ul}\mathbf{f}_l) = \mathbf{L}_{uu}^{-1}(\mathbf{W}_{ul}\mathbf{f}_l)$$

Note $\mathbf{P} = \mathbf{D}^{-1}\mathbf{W}$ and

$$\begin{aligned}\mathbf{L}_{uu}^{-1} &= (\mathbf{D}_{uu}(\mathbf{I} - \mathbf{P}_{uu}))^{-1} = (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{D}_{uu}^{-1} \\ \mathbf{f}_u &= (\mathbf{I} - \mathbf{P}_{uu})^{-1}\mathbf{P}_{ul}\mathbf{f}_l.\end{aligned}$$

Split the equation into +ve & -ve part:

$$\begin{aligned}f_i &= (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1}\mathbf{P}_{ul}\mathbf{f}_l \\ &= \underbrace{\sum_{j:y_j=1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1}\mathbf{P}_{uj}}_{p_i^{(+1)}} - \underbrace{\sum_{j:y_j=-1} (\mathbf{I} - \mathbf{P}_{uu})_{iu}^{-1}\mathbf{P}_{uj}}_{p_i^{(-1)}} \\ &= p_i^{(+1)} - p_i^{(-1)}\end{aligned}$$

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>