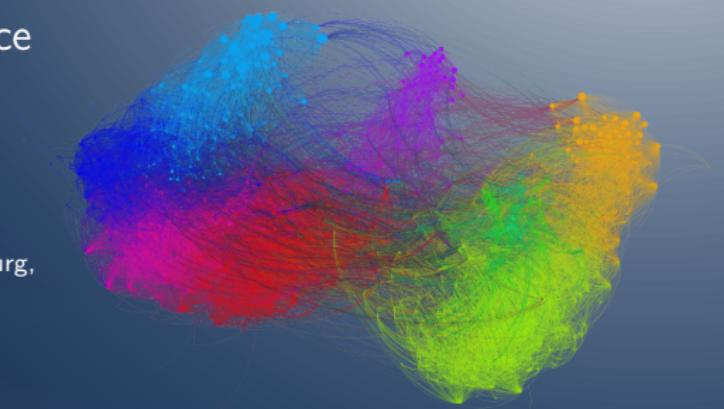


Graphs in Machine Learning


Resistive Networks

Physics and Effective Resistance

Michal Valko

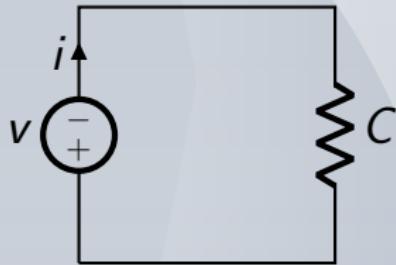
Inria & ENS Paris-Saclay, MVA

Partially based on material by: Ulrike von Luxburg,
Gary Miller, Doyle & Schnell, Daniel Spielman

Laplacians and Resistive Networks

How to compute the $\text{score}(v, m)$?

Idea₄: view edges as conductors


$\text{score}_4(v, m)$ = effective resistance between m and v

Laplacians and Resistive Networks

How to compute the score(v, m)?

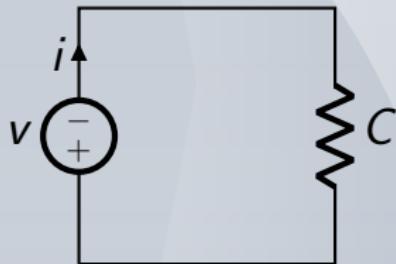
Idea₄: view edges as conductors

$\text{score}_4(v, m) = \text{effective resistance between } m \text{ and } v$

$C \equiv$ conductance

$R \equiv$ resistance

$i \equiv$ current


$V \equiv$ voltage

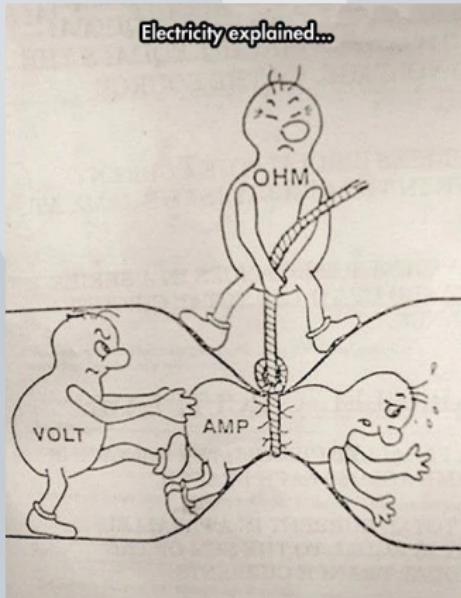
Laplacians and Resistive Networks

How to compute the score(v, m)?

Idea₄: view edges as conductors

$\text{score}_4(v, m) = \text{effective resistance between } m \text{ and } v$

$C \equiv$ conductance


$R \equiv$ resistance

$i \equiv$ current

$V \equiv$ voltage

$$C = \frac{1}{R} \quad i = CV = \frac{V}{R}$$

Resistive Networks: Some high-school physics

Source: Illustration commonly attributed to Vagonum

Resistive Networks

Resistive Networks

resistors **in series**

$$R = R_1 + \cdots + R_n \quad C = \frac{1}{\frac{1}{C_1} + \cdots + \frac{1}{C_N}} \quad i = \frac{V}{R}$$

Resistive Networks

resistors **in series**

$$R = R_1 + \cdots + R_n \quad C = \frac{1}{\frac{1}{C_1} + \cdots + \frac{1}{C_N}} \quad i = \frac{V}{R}$$

conductors **in parallel**

$$C = C_1 + \cdots + C_N \quad i = VC$$

Resistive Networks

resistors **in series**

$$R = R_1 + \cdots + R_n \quad C = \frac{1}{\frac{1}{C_1} + \cdots + \frac{1}{C_N}} \quad i = \frac{V}{R}$$

conductors in **parallel**

$$C = C_1 + \cdots + C_N \quad i = VC$$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let V_{ab} be the voltage between them and i_{ab} the current between them. Define $R_{ab} = \frac{V_{ab}}{i_{ab}}$ and $C_{ab} = \frac{1}{R_{ab}}$.

Resistive Networks

resistors **in series**

$$R = R_1 + \cdots + R_n \quad C = \frac{1}{\frac{1}{C_1} + \cdots + \frac{1}{C_N}} \quad i = \frac{V}{R}$$

conductors in **parallel**

$$C = C_1 + \cdots + C_N \quad i = VC$$

Effective Resistance on a graph

Take two nodes: $a \neq b$. Let V_{ab} be the voltage between them and i_{ab} the current between them. Define $R_{ab} = \frac{V_{ab}}{i_{ab}}$ and $C_{ab} = \frac{1}{R_{ab}}$.

We treat the entire graph as a resistor!

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1. $R_{ab} \geq 0$

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1. $R_{ab} \geq 0$
2. $R_{ab} = 0$ iff $a = b$

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1. $R_{ab} \geq 0$
2. $R_{ab} = 0$ iff $a = b$
3. $R_{ab} = R_{ba}$

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1. $R_{ab} \geq 0$
2. $R_{ab} = 0$ iff $a = b$
3. $R_{ab} = R_{ba}$
4. $R_{ac} \leq R_{ab} + R_{bc}$

Resistive Networks: Optional Homework (ungraded)

Show that R_{ab} is a metric space.

1. $R_{ab} \geq 0$
2. $R_{ab} = 0$ iff $a = b$
3. $R_{ab} = R_{ba}$
4. $R_{ac} \leq R_{ab} + R_{bc}$

The effective resistance is a distance!

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

`https://misovalko.github.io/mva-ml-graphs.html`