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Background: Manifold Learning

problem: definition reduction/manifold learning

Given {x;}I_, from R? find {y;}/_, in R™, where m < d.
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Background: Manifold Learning

problem: definition reduction/manifold learning

Given {x;}I_, from R? find {y;}/_, in R™, where m < d.

= What do we know about the dimensionality reduction

— representation /visualization (2D or 3D)

an old example: globe to a map

often assuming M C R?

— feature extraction

— linear vs. nonlinear dimensionality reduction

= What do we know about linear vs. nonlinear methods?

— linear: ICA, PCA, SVD, ...
— nonlinear often preserve only local distances
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Manifold Learning: Linear vs. Non-linear

Source: Belkin & Niyogi (2003)
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Manifold Learning: Linear vs. Non-linear
(Alternative View)

What do we know about linear vs. nonlinear methods?
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Manifold Learning: Preserving (just) local
distances
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Manifold Learning: Preserving (just) local
distances

Source: Belkin & Niyogi (2003)

d(yi,y;) = d(xj,x;) onlyif d(xj,x;) issmall
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Manifold Learning: Preserving (just) local
distances

Source: Belkin & Niyogi (2003)

d(yi,y;) = d(xj,x;) onlyif d(xj,x;) issmall
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Looks familiar?
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Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = \Df
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http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = \Df

Step 2: Assign m new coordinates:

xiH(@(i)7"'afm+1(i))ZYi
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http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = \Df

Step 2: Assign m new coordinates:
xi = (B (1), .., fms1 (1) = ¥i

Note;: we need to get m + 1 smallest eigenvectors
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http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = \Df

Step 2: Assign m new coordinates:
xi = (B (1), .., fms1 (1) = ¥i

Note;: we need to get m + 1 smallest eigenvectors
Note;: fj is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
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http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps to
1D

Laplacian Eigenmaps 1D objective

minf'lf st fieR, fD1=0, fDf=1
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Manifold Learning: Laplacian Eigenmaps to
1D

Laplacian Eigenmaps 1D objective

minf'lf st fieR, fD1=0, fDf=1

The meaning of the constraints is similar as for spectral
clustering;:

f'Df = 1 is for scaling
f'D1 = 0 is to not get vy

What is the solution?
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Manifold Learning: Example

Original data Nonlinear embedding

T00a om0z 001 0 001 002 003 004

Source: Belkin & Niyogi (2003); MATLAB implementation: http://www.mathworks.com/matlabcentral/

fileexchange/36141- laplacian-eigenmap-~-diffusion-map-~-manifold-learning
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http://www.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning
http://www.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning

.github.io/mva-ml-graphs.html


https://misovalko.github.io/mva-ml-graphs.html

