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Background: Manifold Learning

problem: definition reduction/manifold learning
Given {xi}N

i=1 from Rd find {yi}N
i=1 in Rm, where m � d .

• What do we know about the dimensionality reduction

– representation/visualization (2D or 3D)
– an old example: globe to a map
– often assuming M ⊂ Rd

– feature extraction
– linear vs. nonlinear dimensionality reduction

• What do we know about linear vs. nonlinear methods?

– linear: ICA, PCA, SVD, ...
– nonlinear often preserve only local distances
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Manifold Learning: Linear vs. Non-linear

Source: Belkin & Niyogi (2003)
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Manifold Learning: Linear vs. Non-linear
(Alternative View)

What do we know about linear vs. nonlinear methods?

Source: Belkin & Niyogi (2003)
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Manifold Learning: Preserving (just) local
distances

Source: Belkin & Niyogi (2003)

d(yi , yj) = d(xi , xj) only if d(xi , xj) is small

1-D min
y

∑
ij

wij(yi − yj)
2

m-D min
y

∑
ij

wij‖yi − yj‖2

Looks familiar?
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Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

Lf = λDf

Step 2: Assign m new coordinates:

xi 7→ (f2 (i) , . . . , fm+1 (i)) = yi

Note1: we need to get m + 1 smallest eigenvectors
Note2: f1 is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf
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Manifold Learning: Laplacian Eigenmaps to
1D

Laplacian Eigenmaps 1D objective

min
f

fTLf s.t. fi ∈ R, fTD1 = 0, fTDf = 1

The meaning of the constraints is similar as for spectral
clustering:

fTDf = 1 is for scaling

fTD1 = 0 is to not get v1

What is the solution?
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Manifold Learning: Example

Source: Belkin & Niyogi (2003); MATLAB implementation: http://www.mathworks.com/matlabcentral/

fileexchange/36141-laplacian-eigenmap-~-diffusion-map-~-manifold-learning
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