

Graphs in Machine Learning

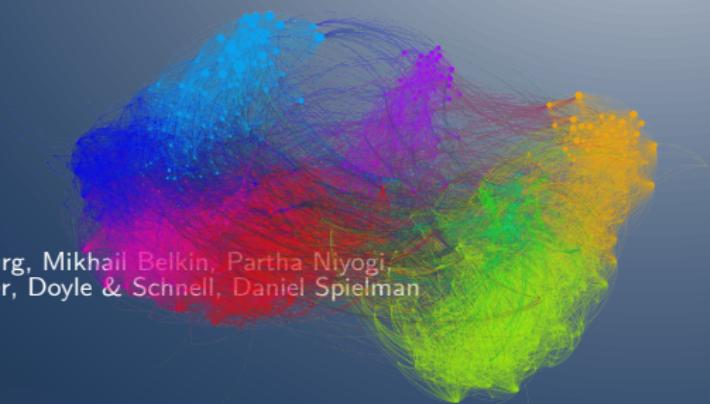
Manifold Learning

Laplacian Eigenmaps

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Ulrike von Luxburg, Mikhail Belkin, Partha Niyogi,
Olivier Chapelle, Bernhard Schölkopf, Gary Miller, Doyle & Schnell, Daniel Spielman



Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)
 - an old example: globe to a map

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$
 - **feature extraction**

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$
 - feature extraction
 - linear vs. nonlinear dimensionality reduction

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$
 - feature extraction
 - linear vs. nonlinear dimensionality reduction
- What do we know about linear vs. nonlinear methods?

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$
 - feature extraction
 - linear vs. nonlinear dimensionality reduction
- What do we know about linear vs. nonlinear methods?
 - linear: ICA, PCA, SVD, ...

Background: Manifold Learning

problem: definition reduction/manifold learning

Given $\{\mathbf{x}_i\}_{i=1}^N$ from \mathbb{R}^d find $\{\mathbf{y}_i\}_{i=1}^N$ in \mathbb{R}^m , where $m \ll d$.

- What do we know about the **dimensionality reduction**
 - representation/visualization (2D or 3D)
 - an old example: globe to a map
 - often assuming $\mathcal{M} \subset \mathbb{R}^d$
 - feature extraction
 - linear vs. nonlinear dimensionality reduction
- What do we know about linear vs. nonlinear methods?
 - linear: ICA, PCA, SVD, ...
 - nonlinear often preserve only **local** distances

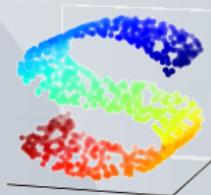
Manifold Learning: Linear vs. Non-linear



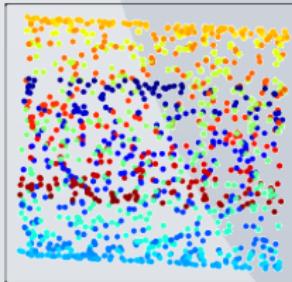
Source: Belkin & Niyogi (2003)

Manifold Learning: Linear vs. Non-linear (Alternative View)

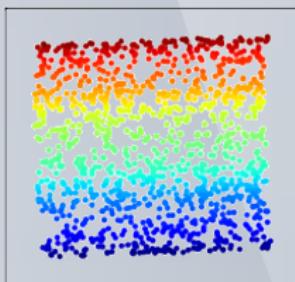
What do we know about linear vs. nonlinear methods?



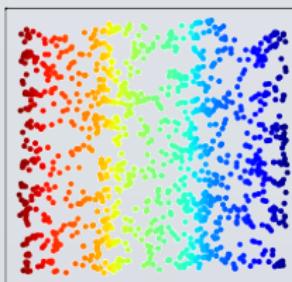
PCA projection



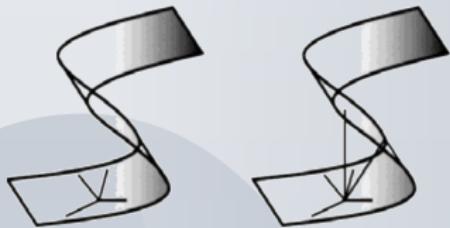
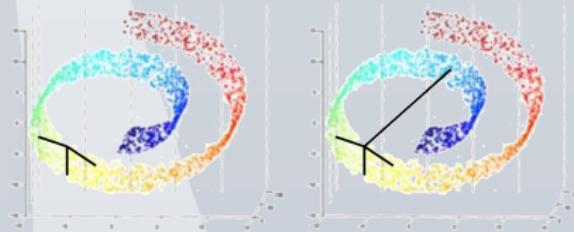
LLE projection



IsoMap projection

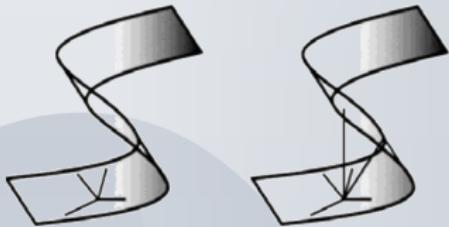
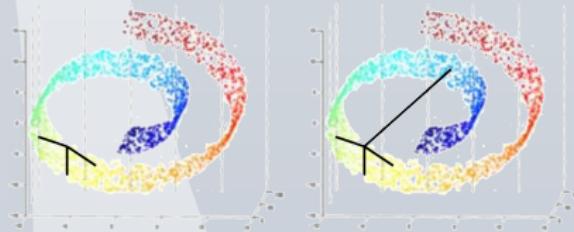


Manifold Learning: Preserving (just) local distances



Source: Belkin & Niyogi (2003)

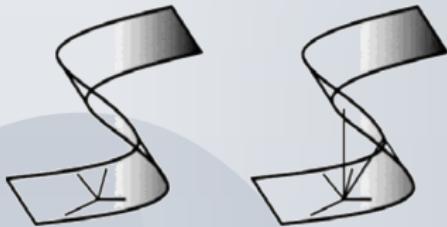
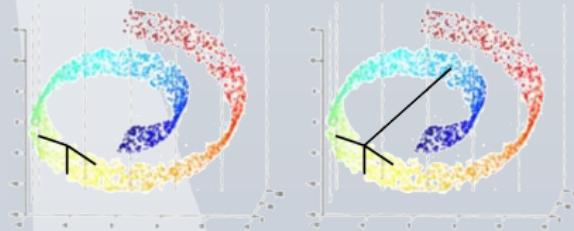
Manifold Learning: Preserving (just) local distances



Source: Belkin & Niyogi (2003)

$$d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{only if} \quad d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{is small}$$

Manifold Learning: Preserving (just) local distances



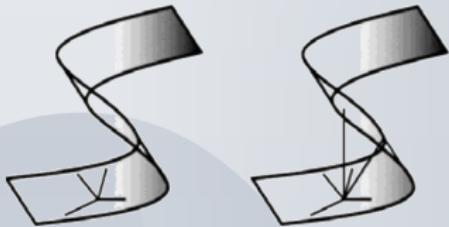
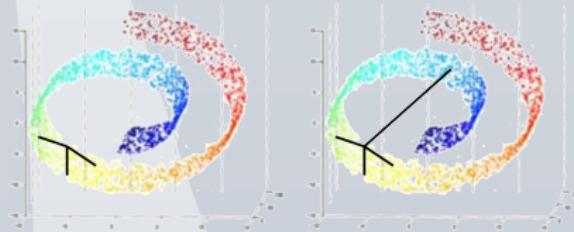
Source: Belkin & Niyogi (2003)

$$d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{only if} \quad d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{is small}$$

1-D

$$\min_y \sum_{ij} w_{ij} (y_i - y_j)^2$$

Manifold Learning: Preserving (just) local distances



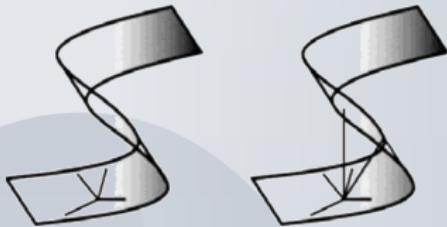
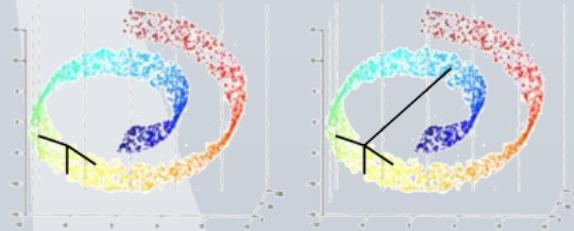
Source: Belkin & Niyogi (2003)

$$d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{only if} \quad d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{is small}$$

$$\text{1-D} \quad \min_{\mathbf{y}} \sum_{ij} w_{ij} (y_i - y_j)^2$$

$$\text{m-D} \quad \min_{\mathbf{y}} \sum_{ij} w_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

Manifold Learning: Preserving (just) local distances



Source: Belkin & Niyogi (2003)

$$d(\mathbf{y}_i, \mathbf{y}_j) = d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{only if} \quad d(\mathbf{x}_i, \mathbf{x}_j) \quad \text{is small}$$

$$\text{1-D} \quad \min_{\mathbf{y}} \sum_{ij} w_{ij} (y_i - y_j)^2$$

$$m\text{-D} \quad \min_{\mathbf{y}} \sum_{ij} w_{ij} \|\mathbf{y}_i - \mathbf{y}_j\|^2$$

Looks familiar?

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$\mathbf{Lf} = \lambda \mathbf{Df}$$

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$\mathbf{Lf} = \lambda \mathbf{Df}$$

Step 2: Assign m new coordinates:

$$\mathbf{x}_i \mapsto (f_2(i), \dots, f_{m+1}(i)) = \mathbf{y}_i$$

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$\mathbf{Lf} = \lambda \mathbf{Df}$$

Step 2: Assign m new coordinates:

$$\mathbf{x}_i \mapsto (f_2(i), \dots, f_{m+1}(i)) = \mathbf{y}_i$$

Note₁: we need to get $m + 1$ smallest eigenvectors

Manifold Learning: Laplacian Eigenmaps

Step 1: Solve generalized eigenproblem:

$$\mathbf{Lf} = \lambda \mathbf{Df}$$

Step 2: Assign m new coordinates:

$$\mathbf{x}_i \mapsto (f_2(i), \dots, f_{m+1}(i)) = \mathbf{y}_i$$

Note₁: we need to get $m + 1$ smallest eigenvectors

Note₂: \mathbf{f}_1 is useless

http://web.cse.ohio-state.edu/~mbelkin/papers/LEM_NC_03.pdf

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^T \mathbf{D} \mathbf{1} = 0, \quad \mathbf{f}^T \mathbf{D} \mathbf{f} = 1$$

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^T \mathbf{D} \mathbf{1} = 0, \quad \mathbf{f}^T \mathbf{D} \mathbf{f} = 1$$

The meaning of the constraints is similar as for spectral clustering:

$\mathbf{f}^T \mathbf{D} \mathbf{f} = 1$ is for

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^T \mathbf{D} \mathbf{1} = 0, \quad \mathbf{f}^T \mathbf{D} \mathbf{f} = 1$$

The meaning of the constraints is similar as for spectral clustering:

$\mathbf{f}^T \mathbf{D} \mathbf{f} = 1$ is for scaling

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^T \mathbf{D} \mathbf{1} = 0, \quad \mathbf{f}^T \mathbf{D} \mathbf{f} = 1$$

The meaning of the constraints is similar as for spectral clustering:

$\mathbf{f}^T \mathbf{D} \mathbf{f} = 1$ is for scaling

$\mathbf{f}^T \mathbf{D} \mathbf{1} = 0$ is to

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^T \mathbf{D} \mathbf{1} = 0, \quad \mathbf{f}^T \mathbf{D} \mathbf{f} = 1$$

The meaning of the constraints is similar as for spectral clustering:

$\mathbf{f}^T \mathbf{D} \mathbf{f} = 1$ is for scaling

$\mathbf{f}^T \mathbf{D} \mathbf{1} = 0$ is to not get \mathbf{v}_1

Manifold Learning: Laplacian Eigenmaps to 1D

Laplacian Eigenmaps 1D objective

$$\min_{\mathbf{f}} \mathbf{f}^T \mathbf{L} \mathbf{f} \quad \text{s.t.} \quad f_i \in \mathbb{R}, \quad \mathbf{f}^T \mathbf{D} \mathbf{1} = 0, \quad \mathbf{f}^T \mathbf{D} \mathbf{f} = 1$$

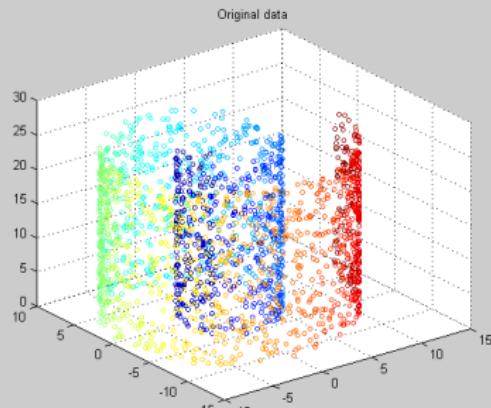
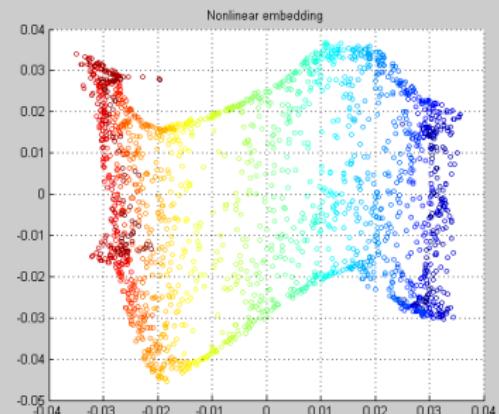
The meaning of the constraints is similar as for spectral clustering:

$\mathbf{f}^T \mathbf{D} \mathbf{f} = 1$ is for scaling

$\mathbf{f}^T \mathbf{D} \mathbf{1} = 0$ is to not get \mathbf{v}_1

What is the solution?

Manifold Learning: Example



Source: Belkin & Niyogi (2003); MATLAB implementation: <http://www.mathworks.com/matlabcentral/fileexchange/36141-laplacian-eigenmap---diffusion-map---manifold-learning>

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

`https://misovalko.github.io/mva-ml-graphs.html`