

Graphs in Machine Learning

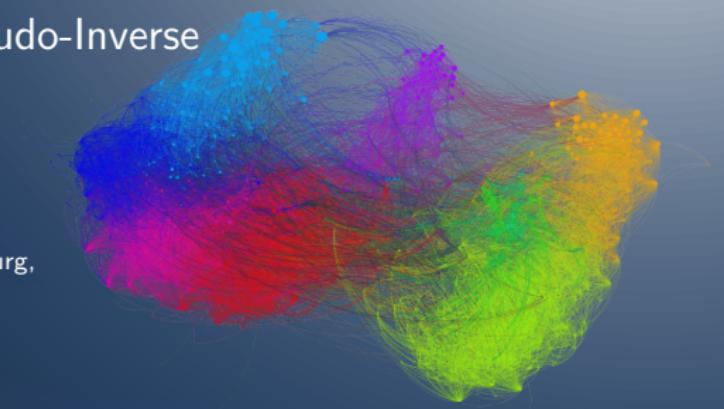
Effective Resistance Computation

Laplacian Connection and Pseudo-Inverse

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Ulrike von Luxburg,
Gary Miller, Doyle & Schnell, Daniel Spielman



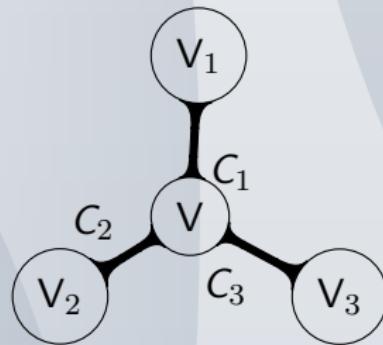
How to compute effective resistance?

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out

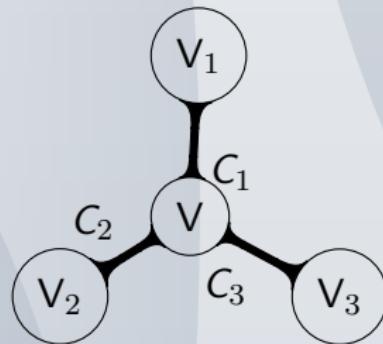
How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out



How to compute effective resistance?

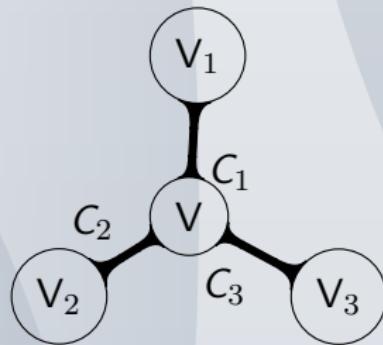
Kirchhoff's Law \equiv flow in = flow out



$$V = \frac{C_1}{C} V_1 + \frac{C_2}{C} V_2 + \frac{C_3}{C} V_3 \text{ (convex combination)}$$

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out

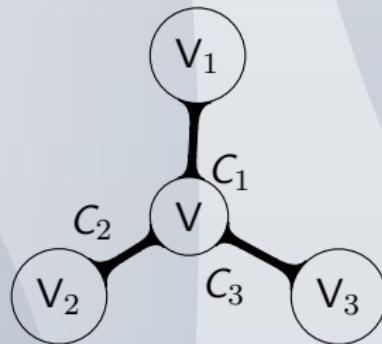


$$V = \frac{C_1}{C} V_1 + \frac{C_2}{C} V_2 + \frac{C_3}{C} V_3 \text{ (convex combination)}$$

$$\text{residual current} = CV - C_1 V_1 - C_2 V_2 - C_3 V_3$$

How to compute effective resistance?

Kirchhoff's Law \equiv flow in = flow out



$$V = \frac{C_1}{C} V_1 + \frac{C_2}{C} V_2 + \frac{C_3}{C} V_3 \text{ (convex combination)}$$

$$\text{residual current} = CV - C_1 V_1 - C_2 V_2 - C_3 V_3$$

Kirchhoff says: This is zero! **There is no residual current!**

Resistors: Where is the link with the Laplacian?

Resistors: Where is the link with the Laplacian?

General case of the previous!

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij} = \text{sum of conductances}$

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij} = \text{sum of conductances}$

$$\mathbf{L}_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -c_{ij} & \text{if } (i, j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij} = \text{sum of conductances}$

$$\mathbf{L}_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -c_{ij} & \text{if } (i, j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

\mathbf{v} = **voltage setting** of the nodes on graph.

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij} = \text{sum of conductances}$

$$\mathbf{L}_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -c_{ij} & \text{if } (i, j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

\mathbf{v} = **voltage setting** of the nodes on graph.

$(\mathbf{L}\mathbf{v})_i$ = residual current at \mathbf{v}_i — as we derived

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij}$ = sum of conductances

$$\mathbf{L}_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -c_{ij} & \text{if } (i, j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

\mathbf{v} = **voltage setting** of the nodes on graph.

$(\mathbf{L}\mathbf{v})_i$ = residual current at \mathbf{v}_i — as we derived

Use: setting voltages and getting the current

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij} = \text{sum of conductances}$

$$\mathbf{L}_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -c_{ij} & \text{if } (i, j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

\mathbf{v} = **voltage setting** of the nodes on graph.

$(\mathbf{L}\mathbf{v})_i$ = residual current at \mathbf{v}_i — as we derived

Use: setting voltages and getting the current

Inverting \equiv injecting current and getting the voltages

Resistors: Where is the link with the Laplacian?

General case of the previous! $d_i = \sum_j c_{ij}$ = sum of conductances

$$\mathbf{L}_{ij} = \begin{cases} d_i & \text{if } i = j, \\ -c_{ij} & \text{if } (i, j) \in E, \\ 0 & \text{otherwise.} \end{cases}$$

\mathbf{v} = **voltage setting** of the nodes on graph.

$(\mathbf{L}\mathbf{v})_i$ = residual current at \mathbf{v}_i — as we derived

Use: setting voltages and getting the current

Inverting \equiv injecting current and getting the voltages

The net injected has to be zero \equiv Kirchhoff's Law.

Resistors and the Laplacian: Finding R_{ab}

Let's calculate R_{1N} to get the **movie recommendation score!**

$$\mathbf{L} \begin{pmatrix} 0 \\ v_2 \\ \vdots \\ v_{n-1} \\ 1 \end{pmatrix} = \begin{pmatrix} i \\ 0 \\ \vdots \\ 0 \\ -i \end{pmatrix}$$
$$i = \frac{V}{R} \quad V = 1 \quad R = \frac{1}{i}$$

$$\text{Return } R_{1N} = \frac{1}{i}$$

Doyle and Snell: Random Walks and Electric Networks

<https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf>

Resistors and the Laplacian: Finding R_{1N}

$\mathbf{Lv} = (i, 0, \dots, -i)^\top \equiv \mathbf{boundary\ valued\ problem}$

Resistors and the Laplacian: Finding R_{1N}

$\mathbf{Lv} = (i, 0, \dots, -i)^\top \equiv \mathbf{boundary\ valued\ problem}$

For R_{1N}

Resistors and the Laplacian: Finding R_{1N}

$\mathbf{L}\mathbf{v} = (i, 0, \dots, -i)^\top \equiv \mathbf{boundary\ valued\ problem}$

For R_{1N}

V_1 and V_N are the **boundary**

Resistors and the Laplacian: Finding R_{1N}

$\mathbf{Lv} = (i, 0, \dots, -i)^\top \equiv \text{boundary valued problem}$

For R_{1N}

V_1 and V_N are the **boundary**

(v_1, v_2, \dots, v_N) is **harmonic**:

Resistors and the Laplacian: Finding R_{1N}

$\mathbf{L}\mathbf{v} = (i, 0, \dots, -i)^\top \equiv \text{boundary valued problem}$

For R_{1N}

V_1 and V_N are the **boundary**

(v_1, v_2, \dots, v_N) is **harmonic**:

$V_i \in \text{interior}$ (not boundary)

Resistors and the Laplacian: Finding R_{1N}

$\mathbf{Lv} = (i, 0, \dots, -i)^\top \equiv \text{boundary valued problem}$

For R_{1N}

V_1 and V_N are the **boundary**

(v_1, v_2, \dots, v_N) is **harmonic**:

$V_i \in \text{interior}$ (not boundary)

V_i is a **convex combination of its neighbors**

Resistors and the Laplacian: Finding R_{1n}

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Resistors and the Laplacian: Finding R_{1n}

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Resistors and the Laplacian: Finding R_{1n}

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $f = v$ is harmonic then min and max are on the boundary.

Resistors and the Laplacian: Finding R_{1n}

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $\mathbf{f} = \mathbf{v}$ is harmonic then min and max are on the boundary.

Proof: $k \in \circ \implies \exists$ neighbors V_i, V_j s.t. $v_i \leq v_k \leq v_j$

Resistors and the Laplacian: Finding $R_{1\text{green}}$

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $f = v$ is harmonic then min and max are on the boundary.

Proof: $k \in \circ \implies \exists$ neighbors V_i, V_j s.t. $v_i \leq v_k \leq v_j$

Uniqueness Principle

If f and g are harmonic with the same boundary then $f = g$

Resistors and the Laplacian: Finding $R_{1\text{green}}$

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $\mathbf{f} = \mathbf{v}$ is harmonic then min and max are on the boundary.

Proof: $k \in \circ \implies \exists$ neighbors V_i, V_j s.t. $v_i \leq v_k \leq v_j$

Uniqueness Principle

If \mathbf{f} and \mathbf{g} are harmonic with the same boundary then $\mathbf{f} = \mathbf{g}$

Proof: $\mathbf{f} - \mathbf{g}$ is harmonic with zero on the boundary
 $\implies \mathbf{f} - \mathbf{g} \equiv 0 \implies \mathbf{f} = \mathbf{g}$ (using maximum principle)

Resistors and the Laplacian: Finding $R_{1\text{green}}$

From the properties of electric networks (cf. Doyle and Snell) we inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions (later in the course)

Maximum Principle

If $\mathbf{f} = \mathbf{v}$ is harmonic then min and max are on the boundary.

Proof: $k \in \circ \implies \exists$ neighbors V_i, V_j s.t. $v_i \leq v_k \leq v_j$

Uniqueness Principle

If \mathbf{f} and \mathbf{g} are harmonic with the same boundary then $\mathbf{f} = \mathbf{g}$

Proof: $\mathbf{f} - \mathbf{g}$ is harmonic with zero on the boundary
 $\implies \mathbf{f} - \mathbf{g} \equiv 0 \implies \mathbf{f} = \mathbf{g}$ (using maximum principle)

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}}$$

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N$$

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist?

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique:

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{L}\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique: 1 in the nullspace of \mathbf{L}

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique: $\mathbf{1}$ in the nullspace of \mathbf{L} :

$$\mathbf{L}(\mathbf{v} + c\mathbf{1}) = \mathbf{Lv} + c\mathbf{L1} = \mathbf{Lv}$$

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique: 1 in the nullspace of \mathbf{L} :

$\mathbf{L}(\mathbf{v} + c\mathbf{1}) = \mathbf{Lv} + c\mathbf{L1} = \mathbf{Lv}$ **Moore-Penrose pseudo-inverse**

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{L}\mathbf{v} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique: 1 in the nullspace of \mathbf{L} :

$\mathbf{L}(\mathbf{v} + c\mathbf{1}) = \mathbf{L}\mathbf{v} + c\mathbf{L}\mathbf{1} = \mathbf{L}\mathbf{v}$ **Moore-Penrose pseudo-inverse**
solves LS

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique: 1 in the nullspace of \mathbf{L} :

$\mathbf{L}(\mathbf{v} + c\mathbf{1}) = \mathbf{Lv} + c\mathbf{L1} = \mathbf{Lv}$ **Moore-Penrose pseudo-inverse**
solves LS

Solution: Instead of $\mathbf{v} = \mathbf{L}^{-1}\mathbf{i}_{\text{ext}}$ we take $\mathbf{v} = \mathbf{L}^+\mathbf{i}_{\text{ext}}$

We get: $R_{1N} = v_1 - v_N = \mathbf{i}_{\text{ext}}^T \mathbf{v}$

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique: 1 in the nullspace of \mathbf{L} :

$\mathbf{L}(\mathbf{v} + c\mathbf{1}) = \mathbf{Lv} + c\mathbf{L1} = \mathbf{Lv}$ **Moore-Penrose pseudo-inverse**
solves LS

Solution: Instead of $\mathbf{v} = \mathbf{L}^{-1}\mathbf{i}_{\text{ext}}$ we take $\mathbf{v} = \mathbf{L}^+\mathbf{i}_{\text{ext}}$

We get: $R_{1N} = v_1 - v_N = \mathbf{i}_{\text{ext}}^\top \mathbf{v} = \mathbf{i}_{\text{ext}}^\top \mathbf{L}^+ \mathbf{i}_{\text{ext}}$.

Resistors and the Laplacian: Finding R_{1N}

Alternative method to calculate R_{1N} :

$$\mathbf{Lv} = \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \\ -1 \end{pmatrix} \stackrel{\text{def}}{=} \mathbf{i}_{\text{ext}} \quad \text{Return} \quad R_{1N} = v_1 - v_N \quad \text{Why?}$$

Question: Does \mathbf{v} exist? \mathbf{L} does not have an inverse :(.

Not unique: 1 in the nullspace of \mathbf{L} :

$\mathbf{L}(\mathbf{v} + c\mathbf{1}) = \mathbf{Lv} + c\mathbf{L1} = \mathbf{Lv}$ **Moore-Penrose pseudo-inverse**
solves LS

Solution: Instead of $\mathbf{v} = \mathbf{L}^{-1}\mathbf{i}_{\text{ext}}$ we take $\mathbf{v} = \mathbf{L}^+\mathbf{i}_{\text{ext}}$

We get: $R_{1N} = v_1 - v_N = \mathbf{i}_{\text{ext}}^T \mathbf{v} = \mathbf{i}_{\text{ext}}^T \mathbf{L}^+ \mathbf{i}_{\text{ext}}$.

Notice: We can reuse \mathbf{L}^+ to get resistances for any pair of nodes!

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^T =$$

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^\top = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top =$$

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^\top = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top = \sum_{i=2}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top$$

Pseudo-inverse of the Laplacian:

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^\top = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top = \sum_{i=2}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top$$

Pseudo-inverse of the Laplacian:

$$\mathbf{L}^+ =$$

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^T = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^T = \sum_{i=2}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^T$$

Pseudo-inverse of the Laplacian:

$$\mathbf{L}^+ = \mathbf{Q}\Lambda^+\mathbf{Q}^T =$$

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^\top = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top = \sum_{i=2}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top$$

Pseudo-inverse of the Laplacian:

$$\mathbf{L}^+ = \mathbf{Q}\Lambda^+\mathbf{Q}^\top = \sum_{i=2}^N \frac{1}{\lambda_i} \mathbf{q}_i \mathbf{q}_i^\top$$

Moore-Penrose pseudo-inverse solves a least squares problem:

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^\top = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top = \sum_{i=2}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top$$

Pseudo-inverse of the Laplacian:

$$\mathbf{L}^+ = \mathbf{Q}\Lambda^+\mathbf{Q}^\top = \sum_{i=2}^N \frac{1}{\lambda_i} \mathbf{q}_i \mathbf{q}_i^\top$$

Moore-Penrose pseudo-inverse solves a least squares problem:

$$\mathbf{v} = \arg \min_{\mathbf{x}} \|\mathbf{L}\mathbf{x} - \mathbf{i}_{\text{ext}}\|_2 =$$

What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

$$\mathbf{L} = \mathbf{Q}\Lambda\mathbf{Q}^\top = \sum_{i=1}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top = \sum_{i=2}^N \lambda_i \mathbf{q}_i \mathbf{q}_i^\top$$

Pseudo-inverse of the Laplacian:

$$\mathbf{L}^+ = \mathbf{Q}\Lambda^+\mathbf{Q}^\top = \sum_{i=2}^N \frac{1}{\lambda_i} \mathbf{q}_i \mathbf{q}_i^\top$$

Moore-Penrose pseudo-inverse solves a least squares problem:

$$\mathbf{v} = \arg \min_{\mathbf{x}} \|\mathbf{L}\mathbf{x} - \mathbf{i}_{\text{ext}}\|_2 = \mathbf{L}^+ \mathbf{i}_{\text{ext}}$$

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

`https://misovalko.github.io/mva-ml-graphs.html`