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Kirchhoff's Law = flow in = flow out
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V = % Vi + % Vo + % V3 (convex combination)
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How to compute effective resistance?

Kirchhoff's Law = flow in = flow out

o O

V=%V, + &V, + & Vs (convex combination)

residual current = CV — GV — G Vo — G35
Kirchhoff says: This is zero! There is no residual current!
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Resistors: Where is the link with the

Laplacian?

General case of the previous! d; = Zj cjj = sum of

conductances
d;
L,‘j =N —¢Gj

0
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Resistors: Where is the link with the

Laplacian?
General case of the previous! d; = Zj cjj = sum of
conductances
di  ifi=],
Lj =14 —c; if(i,j)€E,
0 otherwise.

v = voltage setting of the nodes on graph.
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Resistors: Where is the link with the

Laplacian?
General case of the previous! d; = Zj cjj = sum of
conductances
di  ifi=],
Lj =14 —c; if(i,j)€E,
0 otherwise.

v = voltage setting of the nodes on graph.

(Lv); = residual current at v; — as we derived
Use: setting voltages and getting the current

Inverting = injecting current and getting the voltages

The net injected has to be zero = Kirchhoff's Law.
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Resistors and the Laplacian: Finding R,

Let's calculate Ry to get the movie recommendation score!

5] 0

L ; =
Vh—1 0
1 —

1
Return Riy = =
i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R,y

Lv = (i,0,...,—i)" = boundary valued problem
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Lv = (i,0,...,—i)" = boundary valued problem
For Rin

Vi and V) are the boundary

(vi,va,...,vy) is harmonic:
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Resistors and the Laplacian: Finding R,y

Lv = (i,0,...,—i)" = boundary valued problem
For Rin

Vi and V) are the boundary

(vi,va,...,vy) is harmonic:

V; € interior (not boundary)

V; is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R;,

From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!
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From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
Iv=| 0 i
0
—1
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
Lv = : d:efiext Return Ryy = vy — vy
0
—1
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist?
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Alternative method to calculate Ry y:

1
0
i def .
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0
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L :
L(v+cl)=Lv+cLl=Lv
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L :
L(v + c1) = Lv + cL1 = Lv Moore-Penrose pseudo-inverse
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist? L does not have an inverse :(.

Not unique: 1 in the nullspace of L :

L(v + c1) = Lv + cL1 = Lv Moore-Penrose pseudo-inverse
solves LS
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist? L does not have an inverse :(.

Not unique: 1 in the nullspace of L :

L(v + c1) = Lv + cL1 = Lv Moore-Penrose pseudo-inverse
solves LS

Solution: Instead of v = L™ iy we take v = Ltigy

We get: Ry =v) — vy =iV
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist? L does not have an inverse :(.

Not unique: 1 in the nullspace of L :

L(v + c1) = Lv + cL1 = Lv Moore-Penrose pseudo-inverse
solves LS

Solution: Instead of v = L™ iy we take v = Ltigy

. - _sT T :
We get: Rijy=vi — vy = IV = leXtLJrleXt.
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Resistors and the Laplacian: Finding R,y

Alternative method to calculate Ry y:

1
0
i def .
Lv = : =iext Return Riy=wvi — vy Why?
0
—1

Question: Does v exist? L does not have an inverse :(.

Not unique: 1 in the nullspace of L :

L(v + c1) = Lv + cL1 = Lv Moore-Penrose pseudo-inverse
solves LS

Solution: Instead of v = L™ iy we take v = Ltigy

We get: Ry =vi — vy =il v =1l Ltiex.

Notice: We can reuse LT to get resistances for any pair of
nodes!
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

N
L=QAQ = > \qq] =
i=1
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:
N N
L=QAQ = > Naq] = Y Niaqiq
i=1 i=2
Pseudo-inverse of the Laplacian:

L+ - QA+QT _
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:
N N
L=QAQ = > Naq] = Y Niaqiq
i=1 i=2
Pseudo-inverse of the Laplacian:
LT =QATQ" = Z 3

Moore-Penrose pseudo-inverse solves a least squares problem:
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What? A pseudo-inverse?
Eigendecomposition of the Laplacian:
N N
L=QAQ = > Naq] = Y Niaqiq
i=1 i=2
Pseudo-inverse of the Laplacian:
1
LT =QATQ" = —q;q!
Q Q ; )\iqlq/

Moore-Penrose pseudo-inverse solves a least squares problem:

v = argmin ||Lx — iext||, =
X
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What? A pseudo-inverse?
Eigendecomposition of the Laplacian:
N N
L=QAQ = > Naq] = Y Niaqiq
i=1 i=2
Pseudo-inverse of the Laplacian:
1
+ +07 _ AT
L' =QA'Q"= ) Taq
i=2
Moore-Penrose pseudo-inverse solves a least squares problem:

v = argmin ||Lx — iext [y = LT iext
X
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