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How to compute effective resistance?

Kirchhoff’s Law ≡ flow in = flow out

C1

C2

C3

V1

V

V2 V3

V = C1
C V1 +

C2
C V2 +

C3
C V3 (convex combination)

residual current = CV − C1V1 − C2V2 − C3V3

Kirchhoff says: This is zero! There is no residual current!
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Resistors: Where is the link with the
Laplacian?

General case of the previous! di =
∑

j cij = sum of
conductances

Lij =


di if i = j,
−cij if (i , j) ∈ E ,

0 otherwise.

v = voltage setting of the nodes on graph.

(Lv)i = residual current at vi — as we derived

Use: setting voltages and getting the current

Inverting ≡ injecting current and getting the voltages

The net injected has to be zero ≡ Kirchhoff’s Law.
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Resistors and the Laplacian: Finding Rab

Let’s calculate R1N to get the movie recommendation score!

L


0
v2
...

vn−1

1

 =


i
0
...
0
−i


i = V

R V = 1 R =
1

i

Return R1N =
1

i

Doyle and Snell: Random Walks and Electric Networks
https://math.dartmouth.edu/~doyle/docs/walks/walks.pdf
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Resistors and the Laplacian: Finding R1N

Lv = (i , 0, . . . ,−i)T ≡ boundary valued problem

For R1N

V1 and VN are the boundary

(v1, v2, . . . , vN) is harmonic:

Vi ∈ interior (not boundary)

Vi is a convex combination of its neighbors
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Resistors and the Laplacian: Finding R1n
From the properties of electric networks (cf. Doyle and Snell) we
inherit the useful properties of the Laplacians!

Example: Semi-Supervised Learning Using Gaussian Fields and
Harmonic Functions (later in the course)

Maximum Principle
If f = v is harmonic then min and max are on the boundary.

Proof: k ∈ ◦ =⇒ ∃ neighbors Vi ,Vj s.t. vi ≤ vk ≤ vj

Uniqueness Principle
If f and g are harmonic with the same boundary then f = g

Proof: f − g is harmonic with zero on the boundary
=⇒ f − g ≡ 0 =⇒ f = g (using maximum principle)
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Resistors and the Laplacian: Finding R1N

Alternative method to calculate R1N :

Lv =


1
0
...
0
−1

 def= iext Return R1N = v1 − vN Why?

Question: Does v exist? L does not have an inverse :(.
Not unique: 1 in the nullspace of L :
L(v + c1) = Lv + cL1 = Lv Moore-Penrose pseudo-inverse
solves LS
Solution: Instead of v = L−1iext we take v = L+iext
We get: R1N = v1 − vN = iT

extv = iT
extL+iext.

Notice: We can reuse L+ to get resistances for any pair of
nodes!
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extL+iext.

Notice: We can reuse L+ to get resistances for any pair of
nodes!
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What? A pseudo-inverse?

Eigendecomposition of the Laplacian:

L = QΛQT =

N∑
i=1

λiqiqT
i =

N∑
i=2

λiqiqT
i

Pseudo-inverse of the Laplacian:

L+ = QΛ+QT =
N∑

i=2

1

λi
qiqT

i

Moore-Penrose pseudo-inverse solves a least squares problem:

v = arg min
x

‖Lx − iext‖2 = L+iext
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