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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

mincut(A, B) s.t. |Al =|B|
AB

1 if V; €A,

Graph function f for cluster membership: f; =
-1 if V;eB.

What it is the cut value with this definition?
cut(A,B) = > wj= ZW,J f)? = L'Lf
i€A,jeB

What is the relationship with the smoothness of a graph function?
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cut(A,B)= Y wi; =1 ZW,J f;)? = Lf'Lf
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) = > wij= 4ZW,J f;)? = Lf'Lf
iEAJEB
N > .[[=0— leN
If] = v'N

objective function of spectral clustering
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cut(A,B) = > wij= 4ZW,J f;)? = Lf'Lf
iEAJEB
N > .[[=0— leN
If] = v'N

objective function of spectral clustering

mfinfTLf st. fi==£1, fL1y, |f]= VN

Still NP hard :( —  Relax even further!
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

minfLf st fER, fLlly, [ = VN
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

minf'Lf st fieR, fliy, Ifll = VN

Rayleigh-Ritz theorem

If A < < Ay are the eigenvalues of real symmetric L then
x'Lx
A1 = min = min x'Lx
x£0 X'X xTx=1
x'Lx
Ay = max = max x'Lx
X#O XTX xszl
X Lx .
. = Rayleigh quotient
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering
Infin flLf s.t.

fFeER, fLl1y, |fl=vVN

Rayleigh-Ritz theorem
If A < < Ay are the eigenvalues of real symmetric L then

X
A1 = min min x'Lx
X#O XTX xTx=1
T
x'Lx
Ay = max = max x'Lx
x;é() XTX xTx=1

e Lx — = Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

minf'Lf st fER, fLliy, Ifll = VN

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)

If A1 <--- < Ay are the eigenvalues of real symmetric L and

vi,..., vy the corresponding orthogonal eigenvectors, then for
k=1:N-1
.
. x'Lx .
A1 = min —— = min x'Lx
x£0,xLlvy,..vpy X'X xTx=1,x1vy,...v
x'Lx .
AN—k = max — = max x Lx
x#0,xL vy, vy_kp1 X'X xTx=1,xLVp,..Vvy—kt1
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

mfinfTLf st. feR, fL1y, |f]= VN

Solution:
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

mfinfTLf st. feR, fL1y, |f]= VN

Solution: second eigenvector How do we get the clustering?

The solution may not be integral. What to do?

1 if f; >0,
cluster; =
-1 if f;<O.

Works but this heuristics is often too simple. In practice, cluster
f using k-means to get {C;}; and assign:

1 if i € G,
cluster; =
—1 ifie C;.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

1 1

icAjeB
Define graph function f for cluster membership of RatioCut:

; % if V; € A,

—M% if Vi e B.

Lf — %Z w; j(fi — 6)2 =
fsj
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

. 1 1
RatIOCut(A, B) = Z WU <’/4 + |B’>

icAjeB

Define graph function f for cluster membership of RatioCut:

1Bl v
. A if Vi e A,
1 |A i
ﬁ if V; € B.
T IR y
fLf = Z w; (f; = (|A| + |B|)RatioCut(A, B)
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Spectral Clustering: Approximating RatioCut

Define graph function f for cluster membership of RatioCut
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Spectral Clustering: Approximating RatioCut

Define graph function f for cluster membership of RatioCut:

] % if V; € A,

—\/% if V, € B.
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Spectral Clustering: Approximating RatioCut

Define graph function f for cluster membership of RatioCut:

] % if V; € A,

—\/% if V, € B.
50

S=n

objective function of spectral clustering (same - it's magic!)

mfinfTLf st. feR, fL1y, |f]= VN
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Spectral Clustering: Approximating NCut

Normalized Cut
1 1
NCut(A,B)= ) w; <V01(A)+vol<5>>

icAjeB

Michal Valko — Graphs in Machine Learning 8/13



Spectral Clustering: Approximating NCut

Normalized Cut

1 1
NCut(A, B) = ijwgmm+vw&>

icAjeB

Define graph function f for cluster membership of NCut:
vol(B) .
f = vol(A) if Vi € A,

vol(A .
—\Jos ifVieB
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Spectral Clustering: Approximating NCut

Normalized Cut

1 1
NCut(A,.B)= ) w (Vol(A)+V01(B)>

icAjeB

Define graph function f for cluster membership of NCut:
vol(B) .
f = vol(A) if Vi € A,

vol(A .
—\Jos ifVieB

(D)1, =0
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Spectral Clustering: Approximating NCut

Normalized Cut

1 1
NCut(A,.B)= ) w (Vol(A)+V01(B)>

icAjeB

Define graph function f for cluster membership of NCut:

vol(B) .
R if Vi € A,
g vol(A .
. WEBg if V,‘ € B.
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Spectral Clustering: Approximating NCut

Normalized Cut

1 1
NCut(A,.B)= ) w (Vol(A)+V01(B)>

icAjeB

Define graph function f for cluster membership of NCut:
vol(B) .
c vol(A) if Vi € A,
d vol(A .
s ifvieB.

(Df)™1,=0 fDf=vol(V) fLf=vol(V)NCut(A,B)

objective function of spectral clustering (NCut)

mfinfTLf st. fieR, Dfl1y, f{Df=vol())
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minf'Lf st iR, DfLlly, fDf=vol(V)

Can we apply Rayleigh-Ritz now?
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objective function of spectral clustering (NCut)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

mfinfTLf st. fieR, Dfl1y, f{Df=vol(V)

Can we apply Rayleigh-Ritz now? Define w = D'/2f

objective function of spectral clustering (NCut)

minw' D 2D 2w st. w; € R,w L DY?1y, ||w|? = vol(V)
w

objective function of spectral clustering (NCut)

minw'Lymw st. w €R, wlviy ., [[w]*=vol(V)
w
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw  st. w;eR, wlviy,, [w]|=vol(V)
1 ;
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw  st. w;eR, wlviy,, [w]|=vol(V)
1 ;

Solution by Rayleigh-Ritz?
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw  st. w;eR, wlviy,, [w]|=vol(V)
1 ;

Solution by Rayleigh-Ritz? w=vapr_ .
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw  st. w;eR, wlviy,, [w]|=vol(V)
1 ;

Solution by Rayleigh-Ritz? w=vay_ = D /2w
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw  st. w;eR, wlviy,, [w]|=vol(V)
1 ;

Solution by Rayleigh-Ritz? w=vay_ = D /2w

f is a the second eigenvector of L,y !
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw  st. w;eR, wlviy,, [w]|=vol(V)
1 ;

Solution by Rayleigh-Ritz? w=vay_ = D /2w
f is a the second eigenvector of L,y !

tl;dr: Get the second eigenvector of L/L,, for RatioCut/NCut.
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

minw'Lgymw  st. w;eR, wlviy,, [w]|=vol(V)
1 ;

Solution by Rayleigh-Ritz? w=vay_ = D /2w
f is a the second eigenvector of L,y !

tl;dr: Get the second eigenvector of L/L,, for RatioCut/NCut.

demo: https://dominikschmidt.xyz/spectral-clustering-exp/
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Example: cockroach graphs

Vi Vi Vit Vok
o ———o0o— - - - ® Ps ...
——o— . ° TS

Vok1 Vg V3k41 Vi

Michal Valko — Graphs in Machine Learning 11/13


https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95.pdf

Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Example: cockroach graphs

Vi Vi Vit Vok
(v 5o Py P 0o o
———o— . - - ° TS

Vok1 Vg V3k41 Vi

No efficient approximation exist. Other relaxations possible.

https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95. pdf
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Spectral Clustering: 1D Example
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Source: von Luxburg (2007)
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

10 10 6
4
5 5
2
0 0 0
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Eigenvalues Eigenvalues
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Source: von Luxburg (2007)
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