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Spectral Clustering: Relaxing Balanced Cuts

Relaxation for (simple) balanced cuts for 2 sets

min
A,B

cut(A,B) s.t. |A| = |B|

Graph function f for cluster membership: fi =
{
1 if Vi ∈ A,
−1 if Vi ∈ B.

What it is the cut value with this definition?

cut(A,B) =
∑

i∈A,j∈B
wi,j =

1
4

∑
i,j

wi,j(fi − fj)2 = 1
2 fTLf

What is the relationship with the smoothness of a graph function?
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Spectral Clustering: Relaxing Balanced Cuts

cut(A,B) =
∑

i∈A,j∈B
wi,j =

1
4

∑
i,j

wi,j(fi − fj)2 = 1
2 fTLf

|A| = |B| =⇒
∑

i fi = 0 =⇒ f ⊥ 1N

‖f‖ =
√

N

objective function of spectral clustering

min
f

fTLf s.t. fi = ±1, f ⊥ 1N , ‖f‖ =
√

N

Still NP hard :( → Relax even further!

fi = ±1 → fi ∈ R
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Rayleigh-Ritz theorem
If λ1 ≤ · · · ≤ λN are the eigenvalues of real symmetric L then

λ1 = min
x6=0

xTLx
xTx = min

xTx=1
xTLx

λN = max
x6=0

xTLx
xTx

= max
xTx=1

xTLx

xTLx
xTx ≡ Rayleigh quotient
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Rayleigh-Ritz theorem
If λ1 ≤ · · · ≤ λN are the eigenvalues of real symmetric L then
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xTLx
xTx = min

xTx=1
xTLx

λN = max
x6=0

xTLx
xTx = max

xTx=1
xTLx

xTLx
xTx ≡ Rayleigh quotient

How can we use it?
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Spectral Clustering: Relaxing Balanced Cuts

objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Generalized Rayleigh-Ritz theorem (Courant-Fischer-Weyl)
If λ1 ≤ · · · ≤ λN are the eigenvalues of real symmetric L and
v1, . . . , vN the corresponding orthogonal eigenvectors, then for
k = 1 : N − 1

λk+1 = min
x 6=0,x⊥v1,...vk

xTLx
xTx = min

xTx=1,x⊥v1,...vk
xTLx

λN−k = max
x 6=0,x⊥vn,...vN−k+1

xTLx
xTx = max

xTx=1,x⊥vN ,...vN−k+1

xTLx
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Spectral Clustering: Relaxing Balanced Cuts
objective function of spectral clustering

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N

Solution:

second eigenvector How do we get the clustering?
The solution may not be integral. What to do?

clusteri =

{
1 if fi ≥ 0,

−1 if fi < 0.

Works but this heuristics is often too simple. In practice, cluster
f using k-means to get {Ci}i and assign:

clusteri =

{
1 if i ∈ C1,

−1 if i ∈ C−1.
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Spectral Clustering: Approximating RatioCut

Wait, but we did not care about approximating mincut!

RatioCut

RatioCut(A,B) =
∑

i∈A,j∈B
wij

(
1

|A| +
1

|B|

)

Define graph function f for cluster membership of RatioCut:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

fTLf = 1
2

∑
i,j

wi,j(fi − fj)2 = (|A|+ |B|)RatioCut(A,B)
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Spectral Clustering: Approximating RatioCut
Define graph function f for cluster membership of RatioCut

:

fi =


√

|B|
|A| if Vi ∈ A,

−
√

|A|
|B| if Vi ∈ B.

∑
i

fi = 0

∑
i

f 2i = N

objective function of spectral clustering (same - it’s magic!)

min
f

fTLf s.t. fi ∈ R, f ⊥ 1N , ‖f‖ =
√

N
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Spectral Clustering: Approximating NCut
Normalized Cut

NCut(A,B) =
∑

i∈A,j∈B
wij

(
1

vol(A) +
1

vol(B)

)

Define graph function f for cluster membership of NCut:

fi =


√

vol(B)
vol(A) if Vi ∈ A,

−
√

vol(A)
vol(B) if Vi ∈ B.

(Df)T1n = 0 fTDf = vol(V) fTLf = vol(V)NCut(A,B)

objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)
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Spectral Clustering: Approximating NCut
objective function of spectral clustering (NCut)

min
f

fTLf s.t. fi ∈ R, Df ⊥ 1N , fTDf = vol(V)

Can we apply Rayleigh-Ritz now?

Define w = D1/2f

objective function of spectral clustering (NCut)

min
w

wTD−1/2LD−1/2w s.t. wi ∈ R,w ⊥ D1/21N , ‖w‖2 = vol(V)

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖2 = vol(V)
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Spectral Clustering: Approximating NCut

objective function of spectral clustering (NCut)

min
w

wTLsymw s.t. wi ∈ R, w ⊥ v1,Lsym , ‖w‖ = vol(V)

Solution by Rayleigh-Ritz? w = v2,Lsym f = D−1/2w

f is a the second eigenvector of Lrw !

tl;dr: Get the second eigenvector of L/Lrw for RatioCut/NCut.

demo: https://dominikschmidt.xyz/spectral-clustering-exp/
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Spectral Clustering: Approximation

These are all approximations. How bad can they be?

Pretty bad. Example: cockroach graphs

V1

V2k+1

. . .

. . .

Vk

V3k

Vk+1

V3k+1

. . .

. . .

V2k

V4k

No efficient approximation exist. Other relaxations possible.
https://www.cs.cmu.edu/~glmiller/Publications/Papers/GuMi95.pdf
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Spectral Clustering: 1D Example

Elbow rule/EigenGap heuristic for number of clusters

Source: von Luxburg (2007)
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