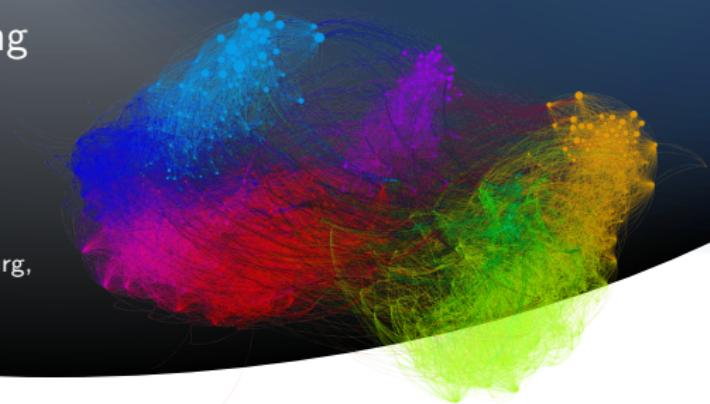


Graphs in Machine Learning


Spectral Clustering: Background

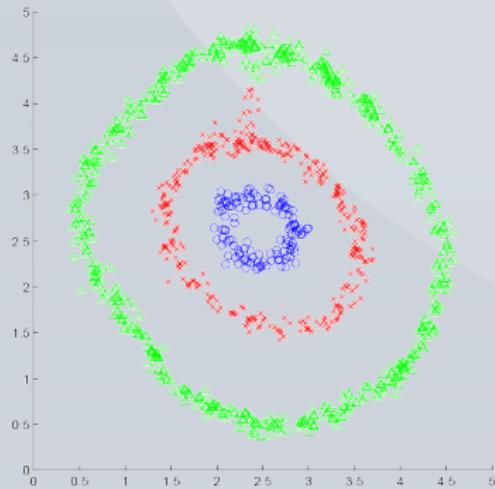
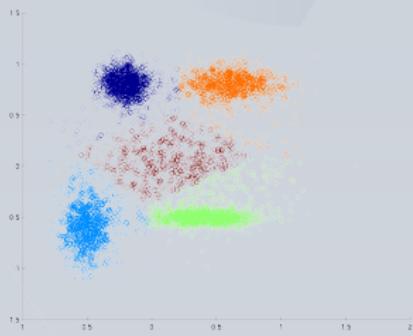
Motivation and Problem Setting

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Ulrike von Luxburg,
Miller, Doyle & Schnell, Daniel Spielman

How to rule the world: “AI” is here

https://www.washingtonpost.com/opinions/obama-the-big-data-president/2013/06/14/1d71fe2e-d391-11e2-b05f-3ea3f0e7bb5a_story.html

<https://www.technologyreview.com/s/509026/how-obamas-team-used-big-data-to-rally-voters/>

Talk of Rayid Ghani: https://www.youtube.com/watch?v=gDM1GuszM_U

Application of Graphs for ML: Clustering

Background: Clustering

- What do we know about the **clustering** in general?

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency
 - number of clusters k need often be known

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency
 - number of clusters k need often be known
 - **difficult to evaluate**

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency
 - number of clusters k need often be known
 - difficult to evaluate
- What do we know about **k -means**?

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency
 - number of clusters k need often be known
 - difficult to evaluate
- What do we know about **k -means**?
 - “hard” version of EM clustering

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency
 - number of clusters k need often be known
 - difficult to evaluate
- What do we know about **k -means**?
 - “hard” version of EM clustering
 - sensitive to initialization

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency
 - number of clusters k need often be known
 - difficult to evaluate
- What do we know about **k -means**?
 - “hard” version of EM clustering
 - sensitive to initialization
 - optimizes for **compactness**

Background: Clustering

- What do we know about the **clustering** in general?
 - ill defined problem (different tasks → different paradigms)
 - “I know it when I see it”
 - inconsistent (wrt. Kleinberg's axioms)
 - ▶ scale-invariance, richness, consistency
 - number of clusters k need often be known
 - difficult to evaluate
- What do we know about **k -means**?
 - “hard” version of EM clustering
 - sensitive to initialization
 - optimizes for **compactness**
 - yet: **algorithm-to-go**

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>