

Graphs in Machine Learning

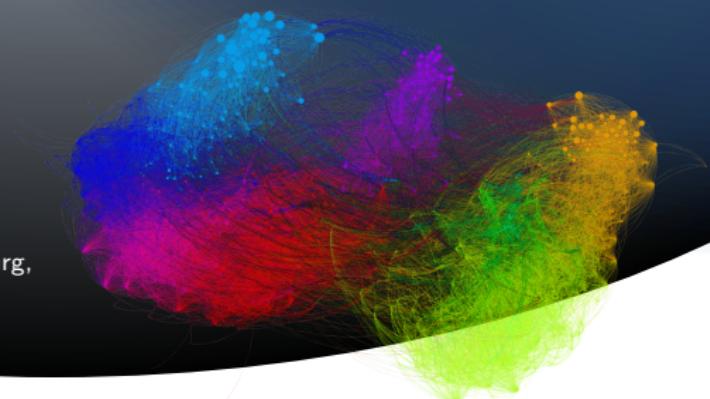
Normalized Laplacians

L_{sym} and L_{rw}

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Ulrike von Luxburg,
Miller, Doyle & Schnell, Daniel Spielman



Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^\top \mathbf{L} \mathbf{f} = \mathbf{f}^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{f} = \boldsymbol{\alpha}^\top \boldsymbol{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^\top \mathbf{L} \mathbf{f} = \mathbf{f}^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{f} = \boldsymbol{\alpha}^\top \boldsymbol{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^\top \mathbf{L} \mathbf{f} = \mathbf{f}^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{f} = \boldsymbol{\alpha}^\top \boldsymbol{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

Spectral coordinates of eigenvector \mathbf{v}_k : $\mathbf{Q}^\top \mathbf{v}_k =$

Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^\top \mathbf{L} \mathbf{f} = \mathbf{f}^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{f} = \boldsymbol{\alpha}^\top \boldsymbol{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

Spectral coordinates of eigenvector \mathbf{v}_k : $\mathbf{Q}^\top \mathbf{v}_k = \mathbf{e}_k$

Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^\top \mathbf{L} \mathbf{f} = \mathbf{f}^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{f} = \boldsymbol{\alpha}^\top \boldsymbol{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

Spectral coordinates of eigenvector \mathbf{v}_k : $\mathbf{Q}^\top \mathbf{v}_k = \mathbf{e}_k$

$$S_G(\mathbf{v}_k) = \mathbf{v}_k^\top \mathbf{L} \mathbf{v}_k = \mathbf{v}_k^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{v}_k = \mathbf{e}_k^\top \boldsymbol{\Lambda} \mathbf{e}_k = \|\mathbf{e}_k\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i (\mathbf{e}_k)_i^2$$

Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^\top \mathbf{L} \mathbf{f} = \mathbf{f}^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{f} = \boldsymbol{\alpha}^\top \boldsymbol{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

Spectral coordinates of eigenvector \mathbf{v}_k : $\mathbf{Q}^\top \mathbf{v}_k = \mathbf{e}_k$

$$S_G(\mathbf{v}_k) = \mathbf{v}_k^\top \mathbf{L} \mathbf{v}_k = \mathbf{v}_k^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{v}_k = \mathbf{e}_k^\top \boldsymbol{\Lambda} \mathbf{e}_k = \|\mathbf{e}_k\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i (\mathbf{e}_k)_i^2 = \lambda_k$$

Smoothness of the Function and Laplacian

$$S_G(\mathbf{f}) = \mathbf{f}^\top \mathbf{L} \mathbf{f} = \mathbf{f}^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{f} = \boldsymbol{\alpha}^\top \boldsymbol{\Lambda} \boldsymbol{\alpha} = \|\boldsymbol{\alpha}\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i \alpha_i^2$$

Eigenvectors are graph functions too!

What is the smoothness of an eigenvector?

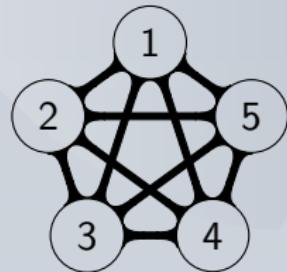
Spectral coordinates of eigenvector \mathbf{v}_k : $\mathbf{Q}^\top \mathbf{v}_k = \mathbf{e}_k$

$$S_G(\mathbf{v}_k) = \mathbf{v}_k^\top \mathbf{L} \mathbf{v}_k = \mathbf{v}_k^\top \mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^\top \mathbf{v}_k = \mathbf{e}_k^\top \boldsymbol{\Lambda} \mathbf{e}_k = \|\mathbf{e}_k\|_{\boldsymbol{\Lambda}}^2 = \sum_{i=1}^N \lambda_i (\mathbf{e}_k)_i^2 = \lambda_k$$

The smoothness of k -th eigenvector is the k -th eigenvalue.

Laplacian of the Complete Graph K_N

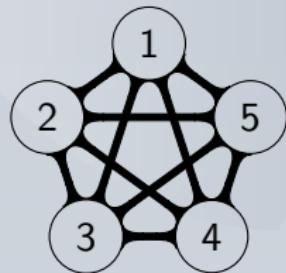
What is the eigenspectrum of \mathbf{L}_{K_N} ?



$$\mathbf{L}_{K_N} = \begin{pmatrix} N-1 & -1 & -1 & -1 & -1 \\ -1 & N-1 & -1 & -1 & -1 \\ -1 & -1 & N-1 & -1 & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & -1 & -1 & -1 & N-1 \end{pmatrix}$$

Laplacian of the Complete Graph K_N

What is the eigenspectrum of \mathbf{L}_{K_N} ?



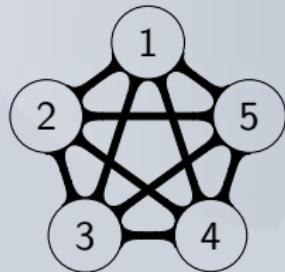
$$\mathbf{L}_{K_N} = \begin{pmatrix} N-1 & -1 & -1 & -1 & -1 \\ -1 & N-1 & -1 & -1 & -1 \\ -1 & -1 & N-1 & -1 & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & -1 & -1 & -1 & N-1 \end{pmatrix}$$

From before: we know that $(0, \mathbf{1}_N)$ is an eigenpair.

If $\mathbf{v} \neq 0_N$ and $\mathbf{v} \perp \mathbf{1}_N \implies \sum_i \mathbf{v}_i = 0$.

Laplacian of the Complete Graph K_N

What is the eigenspectrum of \mathbf{L}_{K_N} ?



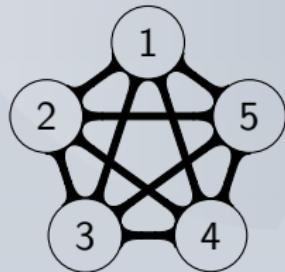
$$\mathbf{L}_{K_N} = \begin{pmatrix} N-1 & -1 & -1 & -1 & -1 \\ -1 & N-1 & -1 & -1 & -1 \\ -1 & -1 & N-1 & -1 & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & -1 & -1 & -1 & N-1 \end{pmatrix}$$

From before: we know that $(0, \mathbf{1}_N)$ is an eigenpair.

If $\mathbf{v} \neq 0_N$ and $\mathbf{v} \perp \mathbf{1}_N \implies \sum_i v_i = 0$. To get the other eigenvalues, we compute $(\mathbf{L}_{K_N} \mathbf{v})_1$ and divide by v_1 (wlog $v_1 \neq 0$).

Laplacian of the Complete Graph K_N

What is the eigenspectrum of \mathbf{L}_{K_N} ?



$$\mathbf{L}_{K_N} = \begin{pmatrix} N-1 & -1 & -1 & -1 & -1 \\ -1 & N-1 & -1 & -1 & -1 \\ -1 & -1 & N-1 & -1 & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & -1 & -1 & -1 & N-1 \end{pmatrix}$$

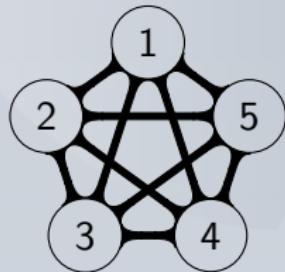
From before: we know that $(0, \mathbf{1}_N)$ is an eigenpair.

If $\mathbf{v} \neq 0_N$ and $\mathbf{v} \perp \mathbf{1}_N \implies \sum_i \mathbf{v}_i = 0$. To get the other eigenvalues, we compute $(\mathbf{L}_{K_N} \mathbf{v})_1$ and divide by \mathbf{v}_1 (wlog $\mathbf{v}_1 \neq 0$).

$$(\mathbf{L}_{K_N} \mathbf{v})_1 = (N-1)\mathbf{v}_1 - \sum_{i=2}^N \mathbf{v}_i = N\mathbf{v}_1.$$

Laplacian of the Complete Graph K_N

What is the eigenspectrum of \mathbf{L}_{K_N} ?



$$\mathbf{L}_{K_N} = \begin{pmatrix} N-1 & -1 & -1 & -1 & -1 \\ -1 & N-1 & -1 & -1 & -1 \\ -1 & -1 & N-1 & -1 & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & -1 & -1 & -1 & N-1 \end{pmatrix}$$

From before: we know that $(0, \mathbf{1}_N)$ is an eigenpair.

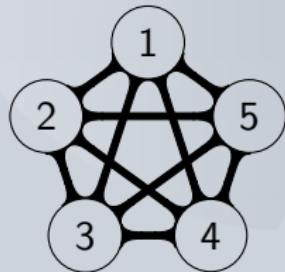
If $\mathbf{v} \neq 0_N$ and $\mathbf{v} \perp \mathbf{1}_N \implies \sum_i \mathbf{v}_i = 0$. To get the other eigenvalues, we compute $(\mathbf{L}_{K_N} \mathbf{v})_1$ and divide by \mathbf{v}_1 (wlog $\mathbf{v}_1 \neq 0$).

$$(\mathbf{L}_{K_N} \mathbf{v})_1 = (N-1)\mathbf{v}_1 - \sum_{i=2}^N \mathbf{v}_i = N\mathbf{v}_1.$$

What are the remaining eigenvalues/vectors?

Laplacian of the Complete Graph K_N

What is the eigenspectrum of \mathbf{L}_{K_N} ?



$$\mathbf{L}_{K_N} = \begin{pmatrix} N-1 & -1 & -1 & -1 & -1 \\ -1 & N-1 & -1 & -1 & -1 \\ -1 & -1 & N-1 & -1 & -1 \\ -1 & -1 & -1 & N-1 & -1 \\ -1 & -1 & -1 & -1 & N-1 \end{pmatrix}$$

From before: we know that $(0, \mathbf{1}_N)$ is an eigenpair.

If $\mathbf{v} \neq 0_N$ and $\mathbf{v} \perp \mathbf{1}_N \implies \sum_i \mathbf{v}_i = 0$. To get the other eigenvalues, we compute $(\mathbf{L}_{K_N} \mathbf{v})_1$ and divide by \mathbf{v}_1 (wlog $\mathbf{v}_1 \neq 0$).

$$(\mathbf{L}_{K_N} \mathbf{v})_1 = (N-1)\mathbf{v}_1 - \sum_{i=2}^N \mathbf{v}_i = N\mathbf{v}_1.$$

What are the remaining eigenvalues/vectors?

Answer: $N-1$ eigenvectors $\perp \mathbf{1}_N$ for eigenvalue N with multiplicity $N-1$.

Normalized Laplacians

$$\mathbf{L}_{un} = \mathbf{D} - \mathbf{W}$$

Normalized Laplacians

$$\mathbf{L}_{un} = \mathbf{D} - \mathbf{W}$$

$$\mathbf{L}_{sym} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$$

Normalized Laplacians

$$\mathbf{L}_{un} = \mathbf{D} - \mathbf{W}$$

$$\mathbf{L}_{sym} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$$

$$\mathbf{L}_{rw} = \mathbf{D}^{-1} \mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{W}$$

Normalized Laplacians

$$\mathbf{L}_{un} = \mathbf{D} - \mathbf{W}$$

$$\mathbf{L}_{sym} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$$

$$\mathbf{L}_{rw} = \mathbf{D}^{-1} \mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{W}$$

$$\mathbf{f}^\top \mathbf{L}_{sym} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2$$

Normalized Laplacians

$$\mathbf{L}_{un} = \mathbf{D} - \mathbf{W}$$

$$\mathbf{L}_{sym} = \mathbf{D}^{-1/2} \mathbf{L} \mathbf{D}^{-1/2} = \mathbf{I} - \mathbf{D}^{-1/2} \mathbf{W} \mathbf{D}^{-1/2}$$

$$\mathbf{L}_{rw} = \mathbf{D}^{-1} \mathbf{L} = \mathbf{I} - \mathbf{D}^{-1} \mathbf{W}$$

$$\mathbf{f}^\top \mathbf{L}_{sym} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} \left(\frac{f_i}{\sqrt{d_i}} - \frac{f_j}{\sqrt{d_j}} \right)^2$$

(λ, \mathbf{u}) is an eigenpair for \mathbf{L}_{rw} iff $(\lambda, \mathbf{D}^{1/2} \mathbf{u})$ is an eigenpair for \mathbf{L}_{sym}

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>