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Smoothness of the Function and Laplacian

N
Se(f) = FLE = QAQ'f= oA = ||af[} = ) Nio}
i=1

Eigenvectors are graph functions too!
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Smoothness of the Function and Laplacian
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Se(f) = FLE = QAQ'f= oA = ||af[} = ) Nio}
i=1

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?
Spectral coordinates of eigenvector vi: Q'vy = e
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Smoothness of the Function and Laplacian

N
Se(f) = FLE = QAQ'f= oA = ||af[} = ) Nio}
i=1

Eigenvectors are graph functions too!
What is the smoothness of an eigenvector?
Spectral coordinates of eigenvector vi: Q'vy = e

N

Sg(Vk):VZLVk:VZQAQTVk = e,T(Aek = HekHi = Z )\,-(ek),? = >\k
i=1

The smoothness of k-th eigenvector is the k-th eigenvalue.
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Laplacian of the Complete Graph K},

What is the eigenspectrum of Ly, ?

N—1 -1 —1 -1 -1
1 N-1 -1 1 1
Ly, = -1 -1 N-1 -1 -1
1 -1 -1 N-1 -1
1 1 1 1 N-1
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Laplacian of the Complete Graph K},

What is the eigenspectrum of Ly, ?

N—1 -1 —1 -1 -1
1 N-1 -1 1 1

Ly, = -1 -1 N-1 -1 -1
1 -1 -1 N-1 -1
-1 -1 —1 1 N-1

From before: we know that (0,1y) is an eigenpair.

fv#Oyandv lly = > . v;=0.
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From before: we know that (0,1y) is an eigenpair.

lfv#0yandv Ll1ly = > ,v;=0. To get the other
eigenvalues, we compute (Lk, v); and divide by v; (wlog vi # 0).
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Normalized Laplacians
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Normalized Laplacians

Lyy=D-W
Lym=D"/?LD"/2 =1- D '/*WD"!/2
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Normalized Laplacians

L,=D-W
Lsym = D—I/QLD—I/Q —I— D—1/2WD71/2
L, =D 'L=I-D'W
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Normalized Laplacians

Ly, =D—-W
Lym=D"/?LD"/2 =1- D '/*WD"!/2
L, =D 'L=1-D'W
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Normalized Laplacians

Ly, =D—-W
Lym=D"/?LD"/2 =1- D '/*WD"!/2
L, =D 'L=1-D'W
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A, u) is an eigenpair for Ly, iff (A, D/2u) is an eigenpair for Lgym,
y
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https://misovalko.github.io/mva-ml-graphs.html

