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Normalized Laplacians

Lsym and Lrw are PSD with non-negative real eigenvalues
0 = λ1 ≤ λ2 ≤ λ3 ≤ · · · ≤ λN .

(λ,u) is an eigenpair for Lrw iff (λ,u) solve the generalized
eigenproblem Lu = λDu.

(0, 1N) is an eigenpair for Lrw .

(0,D1/21N) is an eigenpair for Lsym.

Multiplicity of eigenvalue 0 of Lrw or Lsym equals to the number
of connected components.

Proof: As for L.
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Laplacian and Random Walks on Undirected
Graphs

• stochastic process: vertex-to-vertex jumping

• transition probability vi → vj is pij = wij/di

– di
def=

∑
j wij

• transition matrix P = (pij)ij = D−1W (notice Lrw = I − P)
• if G is connected and non-bipartite → unique stationary

distribution π = (π1, π2, π3, . . . , πN) where πi = di/vol(V )

– vol(G) = vol(V ) = vol(W)
def=

∑
i di =

∑
i,j wij

• π = 1TW
vol(W) verifies πP = π as:

πP =
1TWP
vol(W)

=
1TDP

vol(W)
=

1TDD−1W
vol(W)

=
1TW

vol(W)
= π

What’s the difference from the PageRankTM?
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