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Normalized Laplacians

Lsym and L, are PSD with non-negative real eigenvalues

O0=XA <A <A< <Ay

(A, u) is an eigenpair for L, iff (A, u) solve the generalized
eigenproblem Lu = ADu.
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Normalized Laplacians

Lsym and L, are PSD with non-negative real eigenvalues

O0=XA <A <A< <Ay

(A, u) is an eigenpair for L, iff (A, u) solve the generalized
eigenproblem Lu = ADu.

(0,1y) is an eigenpair for Ly,.

(0, D1/21N) is an eigenpair for Lgym,.
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Normalized Laplacians

Lsym and L, are PSD with non-negative real eigenvalues

O0=XA <A <A< <Ay

(A, u) is an eigenpair for L, iff (A, u) solve the generalized
eigenproblem Lu = ADu.

(0,1y) is an eigenpair for Ly,.
(0,D'/21y) is an eigenpair for Leym.

Multiplicity of eigenvalue 0 of Ly, or Lsy, equals to the number
of connected components.
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Laplacian and Random Walks on Undirected
Graphs

= stochastic process: vertex-to-vertex jumping
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Laplacian and Random Walks on Undirected
Graphs

= stochastic process: vertex-to-vertex jumping

= transition probability v; — v; is p; = w;;/d;
def
- di= Zj Wij
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Laplacian and Random Walks on Undirected
Graphs

= stochastic process: vertex-to-vertex jumping
= transition probability v; — v; is p; = w;;/d;
def
- 4= > Wi

= transition matrix P = (p;); = D~'W (notice L,,, = I — P)
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Laplacian and Random Walks on Undirected
Graphs

= stochastic process: vertex-to-vertex jumping
= transition probability v; — v; is p; = w;;/d;
- did:eij Wij
= transition matrix P = (p;); = D~*W (notice L, = I —P)

= if G is connected and non-bipartite — unique stationary
distribution m = (7, w2, w3, ..., ™N) Where 7; = d;/vol(V)
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Laplacian and Random Walks on Undirected
Graphs

= stochastic process: vertex-to-vertex jumping
= transition probability v; — v; is p; = w;;/d;
- d,-dzefzj wij
= transition matrix P = (p;); = D~*W (notice L, = I —P)
= if G is connected and non-bipartite — unique stationary

distribution m = (7, w2, 3, ..., 7y) Where ; = d;/vol(V)

— vol(G) = vol(V) = vol(W) £ 3", d; = 3, - wy
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Laplacian and Random Walks on Undirected
Graphs

= stochastic process: vertex-to-vertex jumping
= transition probability v; — v; is p; = w;;/d;
- did:eij Wij
= transition matrix P = (p;); = D~*W (notice L, = I —P)
= if G is connected and non-bipartite — unique stationary
distribution m = (7, w2, 3, ..., 7y) Where ; = d;/vol(V)
- vol(G) = vol(V) = Vol(W)dZEfZi di=> ;W

_ 1™W Py _ .
=T = oW verifies TP = 7 as:
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Laplacian and Random Walks on Undirected
Graphs

stochastic process: vertex-to-vertex jumping
transition probability v; — v; is p; = w;;/d;
- did:eij Wij
transition matrix P = (p;); = D~'W (notice L, = I — P)
if G is connected and non-bipartite — unique stationary
distribution m = (7, w2, 3, ..., 7y) Where ; = d;/vol(V)
- vol(G) = vol(V) = Vol(W)dZEfZi di=> ;W

_ 1w e _ .
T = 5o1W) verifies 7P = 7 as:

p_ I'WP _ 1DP 1I'DD'W  1I'W
T S0I(W) T vol(W) T vol(W)  vol(W)

=T
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https://misovalko.github.io/mva-ml-graphs.html

