

Graphs in Machine Learning

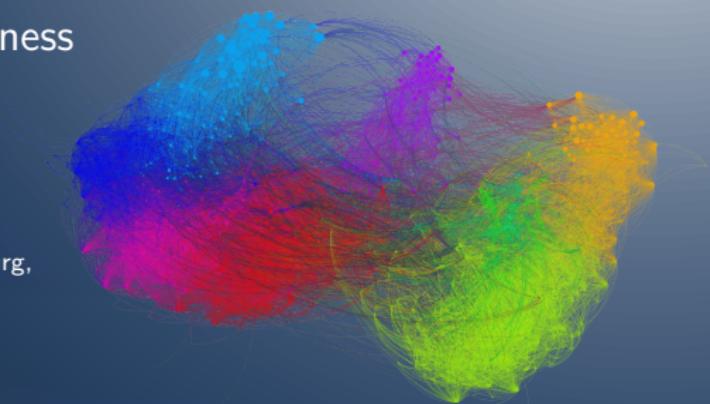
Graph Laplacian Basics

Definition, Properties, Smoothness

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Ulrike von Luxburg,
Gary Miller, Doyle & Schnell, Daniel Spielman



Graph Laplacian

$\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - with a set of **nodes** \mathcal{V} and a set of **edges** \mathcal{E}

Graph Laplacian

$\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - with a set of **nodes** \mathcal{V} and a set of **edges** \mathcal{E}

\mathbf{A} adjacency matrix

Graph Laplacian

$\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - with a set of **nodes** \mathcal{V} and a set of **edges** \mathcal{E}

\mathbf{A}	adjacency matrix
\mathbf{W}	weight matrix

Graph Laplacian

$\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - with a set of **nodes** \mathcal{V} and a set of **edges** \mathcal{E}

A	adjacency matrix
W	weight matrix
D	(diagonal) degree matrix

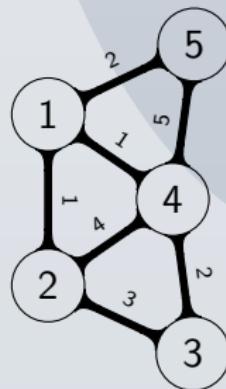
Graph Laplacian

$\mathcal{G} = (\mathcal{V}, \mathcal{E})$ - with a set of **nodes** \mathcal{V} and a set of **edges** \mathcal{E}

A	adjacency matrix
W	weight matrix
D	(diagonal) degree matrix
$\mathbf{L} = \mathbf{D} - \mathbf{W}$	graph Laplacian matrix

$$\mathbf{L} = \begin{pmatrix} 4 & -1 & 0 & -1 & -2 \\ -1 & 8 & -3 & -4 & 0 \\ 0 & -3 & 5 & -2 & 0 \\ -1 & -4 & -2 & 12 & -5 \\ -2 & 0 & 0 & -5 & 7 \end{pmatrix}$$

L is SDD!



demo: <https://dominikschenkxyz/spectral-clustering-exp/>

Properties of Graph Laplacian

Graph function: a vector $\mathbf{f} \in \mathbb{R}^N$ assigning values to nodes:

$$\mathbf{f} : \mathcal{V}(\mathcal{G}) \rightarrow \mathbb{R}.$$

Properties of Graph Laplacian

Graph function: a vector $\mathbf{f} \in \mathbb{R}^N$ assigning values to nodes:

$$\mathbf{f} : \mathcal{V}(\mathcal{G}) \rightarrow \mathbb{R}.$$

$$\mathbf{f}^\top \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$$

Properties of Graph Laplacian

Graph function: a vector $\mathbf{f} \in \mathbb{R}^N$ assigning values to nodes:

$$\mathbf{f} : \mathcal{V}(\mathcal{G}) \rightarrow \mathbb{R}.$$

$$\mathbf{f}^\top \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2 = S_G(\mathbf{f})$$

Properties of Graph Laplacian

Graph function: a vector $\mathbf{f} \in \mathbb{R}^N$ assigning values to nodes:

$$\mathbf{f} : \mathcal{V}(\mathcal{G}) \rightarrow \mathbb{R}.$$

$$\mathbf{f}^\top \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2 = S_G(\mathbf{f})$$

Proof:

$$\begin{aligned} \mathbf{f}^\top \mathbf{L} \mathbf{f} &= \sum_{i,j \leq N} \mathbf{L}_{i,j} f_i f_j = \sum_{i,j \leq N} \mathbf{D}_{i,j} f_i f_j - \sum_{i,j \leq N} \mathbf{W}_{i,j} f_i f_j = \sum_{i=1}^N d_i f_i^2 - \sum_{i,j \leq N} w_{i,j} f_i f_j \\ &= \frac{1}{2} \left(\sum_{i=1}^N d_i f_i^2 - 2 \sum_{i,j \leq N} w_{i,j} f_i f_j + \sum_{j=1}^N d_j f_j^2 \right) = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2 \end{aligned}$$

Review: Eigenvalues and Eigenvectors

A vector \mathbf{v} is an **eigenvector** of matrix \mathbf{M} of **eigenvalue** λ

$$\mathbf{M}\mathbf{v} = \lambda\mathbf{v}.$$

Review: Eigenvalues and Eigenvectors

A vector \mathbf{v} is an **eigenvector** of matrix \mathbf{M} of **eigenvalue** λ

$$\mathbf{M}\mathbf{v} = \lambda\mathbf{v}.$$

If $(\lambda_1, \mathbf{v}_1)$ are $(\lambda_2, \mathbf{v}_2)$ **eigenpairs** for symmetric \mathbf{M} with $\lambda_1 \neq \lambda_2$ then $\mathbf{v}_1 \perp \mathbf{v}_2$, i.e., $\mathbf{v}_1^T \mathbf{v}_2 = 0$.

Review: Eigenvalues and Eigenvectors

A vector \mathbf{v} is an **eigenvector** of matrix \mathbf{M} of **eigenvalue** λ

$$\mathbf{M}\mathbf{v} = \lambda\mathbf{v}.$$

If $(\lambda_1, \mathbf{v}_1)$ are $(\lambda_2, \mathbf{v}_2)$ **eigenpairs** for symmetric \mathbf{M} with $\lambda_1 \neq \lambda_2$ then $\mathbf{v}_1 \perp \mathbf{v}_2$, i.e., $\mathbf{v}_1^\top \mathbf{v}_2 = 0$.

Proof: $\lambda_1 \mathbf{v}_1^\top \mathbf{v}_2 = \mathbf{v}_1^\top \mathbf{M} \mathbf{v}_2 = \mathbf{v}_1^\top \lambda_2 \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^\top \mathbf{v}_2 \implies \mathbf{v}_1^\top \mathbf{v}_2 = 0$

Review: Eigenvalues and Eigenvectors

A vector \mathbf{v} is an **eigenvector** of matrix \mathbf{M} of **eigenvalue** λ

$$\mathbf{M}\mathbf{v} = \lambda\mathbf{v}.$$

If $(\lambda_1, \mathbf{v}_1)$ are $(\lambda_2, \mathbf{v}_2)$ **eigenpairs** for symmetric \mathbf{M} with $\lambda_1 \neq \lambda_2$ then $\mathbf{v}_1 \perp \mathbf{v}_2$, i.e., $\mathbf{v}_1^\top \mathbf{v}_2 = 0$.

Proof: $\lambda_1 \mathbf{v}_1^\top \mathbf{v}_2 = \mathbf{v}_1^\top \mathbf{M} \mathbf{v}_2 = \mathbf{v}_1^\top \lambda_2 \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^\top \mathbf{v}_2 \implies \mathbf{v}_1^\top \mathbf{v}_2 = 0$

If (λ, \mathbf{v}_1) , (λ, \mathbf{v}_2) are eigenpairs for \mathbf{M} then $(\lambda, \mathbf{v}_1 + \mathbf{v}_2)$ is as well.

Review: Eigenvalues and Eigenvectors

A vector \mathbf{v} is an **eigenvector** of matrix \mathbf{M} of **eigenvalue** λ

$$\mathbf{M}\mathbf{v} = \lambda\mathbf{v}.$$

If $(\lambda_1, \mathbf{v}_1)$ are $(\lambda_2, \mathbf{v}_2)$ **eigenpairs** for symmetric \mathbf{M} with $\lambda_1 \neq \lambda_2$ then $\mathbf{v}_1 \perp \mathbf{v}_2$, i.e., $\mathbf{v}_1^\top \mathbf{v}_2 = 0$.

Proof: $\lambda_1 \mathbf{v}_1^\top \mathbf{v}_2 = \mathbf{v}_1^\top \mathbf{M} \mathbf{v}_2 = \mathbf{v}_1^\top \lambda_2 \mathbf{v}_2 = \lambda_2 \mathbf{v}_1^\top \mathbf{v}_2 \implies \mathbf{v}_1^\top \mathbf{v}_2 = 0$

If (λ, \mathbf{v}_1) , (λ, \mathbf{v}_2) are eigenpairs for \mathbf{M} then $(\lambda, \mathbf{v}_1 + \mathbf{v}_2)$ is as well.

For symmetric \mathbf{M} , the **multiplicity** of λ is the dimension of the space of eigenvectors corresponding to λ .

$N \times N$ symmetric matrix has N eigenvalues (w/ multiplicities).

Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an **eigenvector** of matrix M of **eigenvalue** λ

$$Mv = \lambda v.$$

Vectors $\{v_i\}_i$ form an **orthonormal** basis with $\lambda_1 \leq \lambda_2 \leq \dots \lambda_N$.

$$\forall i \quad Mv_i = \lambda_i v_i$$

Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an **eigenvector** of matrix M of **eigenvalue** λ

$$Mv = \lambda v.$$

Vectors $\{v_i\}_i$ form an **orthonormal** basis with $\lambda_1 \leq \lambda_2 \leq \dots \lambda_N$.

$$\forall i \quad Mv_i = \lambda_i v_i \quad \equiv \quad MQ = Q\Lambda$$

Q has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Eigenvalues, Eigenvectors, and Eigendecomposition

A vector v is an **eigenvector** of matrix M of **eigenvalue** λ

$$Mv = \lambda v.$$

Vectors $\{v_i\}_i$ form an **orthonormal** basis with $\lambda_1 \leq \lambda_2 \leq \dots \lambda_N$.

$$\forall i \quad Mv_i = \lambda_i v_i \quad \equiv \quad \boxed{MQ = Q\Lambda}$$

Q has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying $MQ = Q\Lambda$ by Q^T we get the **eigendecomposition** of M :

$$M = \boxed{MQQ^T = Q\Lambda Q^T} \quad \leftarrow \sum_i \lambda_i v_i v_i^T$$

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

L is symmetric

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

L is symmetric

L positive semi-definite

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

L is symmetric

L positive semi-definite $\mathbf{f}^T \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

L is symmetric

L positive semi-definite $\mathbf{f}^\top \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$

Recall: If $\mathbf{L} \mathbf{f} = \lambda \mathbf{f}$ then λ is an **eigenvalue** (of the Laplacian).

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

L is symmetric

L positive semi-definite $\mathbf{f}^T \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$

Recall: If $\mathbf{L} \mathbf{f} = \lambda \mathbf{f}$ then λ is an **eigenvalue** (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: $\mathbf{1}_N$.

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

L is symmetric

L positive semi-definite $\mathbf{f}^T \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$

Recall: If $\mathbf{L} \mathbf{f} = \lambda \mathbf{f}$ then λ is an **eigenvalue** (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: $\mathbf{1}_N$.

All eigenvalues are non-negative reals $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_N$.

$M = L$: Properties of Graph Laplacian

We can assume **non-negative weights**: $w_{ij} \geq 0$.

L is symmetric

L positive semi-definite $\mathbf{f}^T \mathbf{L} \mathbf{f} = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$

Recall: If $\mathbf{L} \mathbf{f} = \lambda \mathbf{f}$ then λ is an **eigenvalue** (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: $\mathbf{1}_N$.

All eigenvalues are non-negative reals $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_N$.

Self-edges do not change the value of L .

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$.

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$. Therefore, \mathbf{f} is constant on each connected component.

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$. Therefore, \mathbf{f} is constant on each connected component. If there are k components, then \mathbf{L} is k -block-diagonal:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & & & \\ & \mathbf{L}_2 & & \\ & & \ddots & \\ & & & \mathbf{L}_k \end{bmatrix}$$

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$. Therefore, \mathbf{f} is constant on each connected component. If there are k components, then \mathbf{L} is k -block-diagonal:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & & & \\ & \mathbf{L}_2 & & \\ & & \ddots & \\ & & & \mathbf{L}_k \end{bmatrix}$$

For block-diagonal matrices: the spectrum is the union of the spectra of \mathbf{L}_i .

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$. Therefore, \mathbf{f} is constant on each connected component. If there are k components, then \mathbf{L} is k -block-diagonal:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & & & \\ & \mathbf{L}_2 & & \\ & & \ddots & \\ & & & \mathbf{L}_k \end{bmatrix}$$

For block-diagonal matrices: the spectrum is the union of the spectra of \mathbf{L}_i (eigenvectors of \mathbf{L}_i padded with zeros elsewhere).

Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of \mathbf{L} equals to the number of connected components. The eigenspace of 0 is spanned by the components' indicators.

Proof: If $(0, \mathbf{f})$ is an eigenpair then $0 = \frac{1}{2} \sum_{i,j \leq N} w_{i,j} (f_i - f_j)^2$. Therefore, \mathbf{f} is constant on each connected component. If there are k components, then \mathbf{L} is k -block-diagonal:

$$\mathbf{L} = \begin{bmatrix} \mathbf{L}_1 & & & \\ & \mathbf{L}_2 & & \\ & & \ddots & \\ & & & \mathbf{L}_k \end{bmatrix}$$

For block-diagonal matrices: the spectrum is the union of the spectra of \mathbf{L}_i (eigenvectors of \mathbf{L}_i padded with zeros elsewhere).

For \mathbf{L}_i $(0, \mathbf{1}_{|V_i|})$ is an eigenpair, hence the claim.

Michal Valko

michal.valko@inria.fr

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>

