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Graph Laplacian
G = (V, E) - with a set of nodes V and a set of edges E

A adjacency matrix
W weight matrix
D (diagonal) degree matrix

L = D − W graph Laplacian matrix

L =


4 −1 0 −1 −2

−1 8 −3 −4 0
0 −3 5 −2 0

−1 −4 −2 12 −5
−2 0 0 −5 7



L is SDD!
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demo: https://dominikschmidt.xyz/spectral-clustering-exp/
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Properties of Graph Laplacian

Graph function: a vector f ∈ RN assigning values to nodes:

f : V(G) → R.

fTLf = 1

2

∑
i,j≤N

wi,j(fi − fj)2 = SG(f)

Proof:

fTLf =
∑

i,j≤N

Li,j fi fj =
∑

i,j≤N

Di,j fi fj −
∑

i,j≤N

Wi,j fi fj =

N∑
i=1

di f 2
i −

∑
i,j≤N

wi,j fi fj

=
1

2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +

N∑
j=1

di f 2
j

 =
1

2

∑
i,j≤N

wi,j(fi − fj)
2

Michal Valko – Graphs in Machine Learning 3/8



Properties of Graph Laplacian

Graph function: a vector f ∈ RN assigning values to nodes:

f : V(G) → R.

fTLf = 1

2

∑
i,j≤N

wi,j(fi − fj)2

= SG(f)

Proof:

fTLf =
∑

i,j≤N

Li,j fi fj =
∑

i,j≤N

Di,j fi fj −
∑

i,j≤N

Wi,j fi fj =

N∑
i=1

di f 2
i −

∑
i,j≤N

wi,j fi fj

=
1

2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +

N∑
j=1

di f 2
j

 =
1

2

∑
i,j≤N

wi,j(fi − fj)
2

Michal Valko – Graphs in Machine Learning 3/8



Properties of Graph Laplacian

Graph function: a vector f ∈ RN assigning values to nodes:

f : V(G) → R.

fTLf = 1

2

∑
i,j≤N

wi,j(fi − fj)2 = SG(f)

Proof:

fTLf =
∑

i,j≤N

Li,j fi fj =
∑

i,j≤N

Di,j fi fj −
∑

i,j≤N

Wi,j fi fj =

N∑
i=1

di f 2
i −

∑
i,j≤N

wi,j fi fj

=
1

2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +

N∑
j=1

di f 2
j

 =
1

2

∑
i,j≤N

wi,j(fi − fj)
2

Michal Valko – Graphs in Machine Learning 3/8



Properties of Graph Laplacian

Graph function: a vector f ∈ RN assigning values to nodes:

f : V(G) → R.

fTLf = 1

2

∑
i,j≤N

wi,j(fi − fj)2 = SG(f)

Proof:

fTLf =
∑

i,j≤N

Li,j fi fj =
∑

i,j≤N

Di,j fi fj −
∑

i,j≤N

Wi,j fi fj =

N∑
i=1

di f 2
i −

∑
i,j≤N

wi,j fi fj

=
1

2

 N∑
i=1

di f 2
i − 2

∑
i,j≤N

wi,j fi fj +
N∑

j=1

di f 2
j

 =
1

2

∑
i,j≤N

wi,j(fi − fj)
2

Michal Valko – Graphs in Machine Learning 3/8



Review: Eigenvalues and Eigenvectors
A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

If (λ1, v1) are (λ2, v2) eigenpairs for symmetric M with λ1 6= λ2

then v1 ⊥ v2, i.e., vT
1v2 = 0.

Proof: λ1vT
1v2 = vT

1Mv2 = vT
1λ2v2 = λ2vT

1v2 =⇒ vT
1v2 = 0

If (λ, v1), (λ, v2) are eigenpairs for M then (λ, v1 + v2) is as well.

For symmetric M, the multiplicity of λ is the dimension of the
space of eigenvectors corresponding to λ.

N × N symmetric matrix has N eigenvalues (w/ multiplicities).
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Eigenvalues, Eigenvectors, and
Eigendecomposition
A vector v is an eigenvector of matrix M of eigenvalue λ

Mv = λv.

Vectors {vi}i form an orthonormal basis with λ1 ≤ λ2 ≤ . . . λN .

∀i Mvi = λivi

≡ MQ = QΛ

Q has eigenvectors in columns and Λ has eigenvalues on its diagonal.

Right-multiplying MQ = QΛ by QT we get the
eigendecomposition of M:

M = MQQT = QΛQT =
∑

i λivivT
i
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M = L: Properties of Graph Laplacian
We can assume non-negative weights: wij ≥ 0.

L is symmetric

L positive semi-definite fTLf = 1
2

∑
i,j≤N wi,j(fi − fj)2

Recall: If Lf = λf then λ is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1N .

All eigenvalues are non-negative reals 0 = λ1 ≤ λ2 ≤ · · · ≤ λN .

Self-edges do not change the value of L.
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0, f) is an eigenpair then 0 = 1
2

∑
i,j≤N wi,j(fi − fj)2.

Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:

L =


L1

L2

. . .
Lk


For block-diagonal matrices: the spectrum is the union of the
spectra of Li (eigenvectors of Li padded with zeros elsewhere).

For Li (0, 1|Vi |) is an eigenpair, hence the claim.
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