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Graph Laplacian

G = (V,€) - with a set of nodes V and a set of edges £
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Graph Laplacian

G = (V,€) - with a set of nodes V and a set of edges £

A adjacency matrix
\\% weight matrix
D (diagonal) degree matrix
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Graph Laplacian

G = (V,€) - with a set of nodes V and a set of edges £

A adjacency matrix
\\% weight matrix
D (diagonal) degree matrix

L=D - W graph Laplacian matrix

4 -1 0 -1 -2

=1 8 -3 —4

L= 0 -3 5 -2 0
-1 4 -2 12 -5

—2 0 © =b 7

(=]

L is SDD!

demo: https://dominikschmidt.xyz/spectral-clustering-exp/
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Properties of Graph Laplacian

Graph function: a vector f € R" assigning values to nodes:

£:V(G) - R.
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Properties of Graph Laplacian

Graph function: a vector f € R" assigning values to nodes:

£:V(G) - R.

fLf = % > wi(fi—£)?
ij<N
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Properties of Graph Laplacian

Graph function: a vector f € R" assigning values to nodes:

£:V(G) - R.

1
fLf=2 > wi(fi—£)? = Se(f)
ij<N
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Properties of Graph Laplacian

Graph function: a vector f € R" assigning values to nodes:

£:V(G) - R.
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Review: Eigenvalues and Eigenvectors

A vector v is an eigenvector of matrix M of eigenvalue A
Mv = Av.
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Review: Eigenvalues and Eigenvectors
A vector v is an eigenvector of matrix M of eigenvalue A

Mv = \v.

If (A1,v1) are (Ao, ve) eigenpairs for symmetric M with A\; # Ao
then vi L vy, ie., v{va = 0.
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Review: Eigenvalues and Eigenvectors

A vector v is an eigenvector of matrix M of eigenvalue A
Mv = Av.

If (A1,v1) are (Ao, ve) eigenpairs for symmetric M with A\; # Ao
then vi L vy, ie., v{va = 0.

If (\,v1), (X, v2) are eigenpairs for M then (X, vy + va) is as well.
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Review: Eigenvalues and Eigenvectors

A vector v is an eigenvector of matrix M of eigenvalue A
Myv = Av.

If (A1,v1) are (Ao, ve) eigenpairs for symmetric M with A\; # Ao
then vi L vy, ie., v{va = 0.
If (\,v1), (X, v2) are eigenpairs for M then (X, vy + va) is as well.

For symmetric M, the multiplicity of A is the dimension of the
space of eigenvectors corresponding to .

N x N symmetric matrix has ) eigenvalues (w/ multiplicities).
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Eigenvalues, Eigenvectors, and
Eigendecomposition

Vectors {v;}; form an orthonormal basis with A\; < Ao < ... Ap.

Vi MV,' e )\,’V,‘
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Eigenvalues, Eigenvectors, and
Eigendecomposition

Vectors {v;}; form an orthonormal basis with A\; < Ao < ... Ap.

Vi MV,' = )\,’V,‘ = MQ = QA
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Eigenvalues, Eigenvectors, and
Eigendecomposition

Vectors {v;}; form an orthonormal basis with A\; < Ao < ... Ap.
Vi MV,' = )\,’V,‘ = MQ = QA

Right-multiplying MQ = QA by Q" we get the
eigendecomposition of M:

M= MQQ" = QAQ" ‘=3 \viv]
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

Michal Valko — Graphs in Machine Learning



M = L: Properties of Graph Laplacian
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

L is symmetric

L positive semi-definite

Michal Valko — Graphs in Machine Learning



M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

L is symmetric

L positive semi-definite f'Lf = 1 >ijen wij(fi — f;)?
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

L is symmetric

L positive semi-definite f'Lf = 1 >ijen wij(fi — f;)?

Recall: If Lf = Af then X is an eigenvalue (of the Laplacian).

Michal Valko — Graphs in Machine Learning




M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.
L is symmetric
L positive semi-definite f'Lf = 1 >ijen wij(fi — f;)?

Recall: If Lf = Af then X is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1.
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

L is symmetric

L positive semi-definite f'Lf = 1 >ijen wij(fi — f;)?

Recall: If Lf = Af then X is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1.

All eigenvalues are non-negative reals 0 = Ay < Ao < -+ < Apy.
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M = L: Properties of Graph Laplacian

We can assume non-negative weights: w;; > 0.

L is symmetric

L positive semi-definite f'Lf = 1 >ijen wij(fi — f;)?

Recall: If Lf = Af then X is an eigenvalue (of the Laplacian).

The smallest eigenvalue of L is 0. Corresponding eigenvector: 1.
All eigenvalues are non-negative reals 0 = Ay < Ao < -+ < Apy.

Self-edges do not change the value of L.
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0,f) is an eigenpair then 0 = 3 37, i\, wi;(fi — f;).
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The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
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Proof: If (0,f) is an eigenpair then 0 = 3 37, i\, wi;(fi — f;).
Therefore, f is constant on each connected component.
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0,f) is an eigenpair then 0 = 3 37, i\, wi;(fi — f;).
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:
Ly
L

Ly
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0,f) is an eigenpair then 0 = 3 37, i\, wi;(fi — f;).
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:
Ly
L

Ly

For block-diagonal matrices: the spectrum is the union of the
spectra of L;
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The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.
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Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:
Ly
L

Ly

For block-diagonal matrices: the spectrum is the union of the
spectra of L; (eigenvectors of L; padded with zeros elsewhere).
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Properties of Graph Laplacian

The multiplicity of eigenvalue 0 of L equals to the number of
connected components. The eigenspace of 0 is spanned by the
components’ indicators.

Proof: If (0,f) is an eigenpair then 0 = 3 37, i\, wi;(fi — f;).
Therefore, f is constant on each connected component. If there
are k components, then L is k-block-diagonal:

Ly
L

Ly

For block-diagonal matrices: the spectrum is the union of the
spectra of L; (eigenvectors of L; padded with zeros elsewhere).

For L; (0,1)y,) is an eigenpair, hence the claim.
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