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Success story #2 Google PageRank

Objective: Rank all web pages (nodes on the graph) by how
many other pages link to them and how important they are.

basic PageRank is independent of query and the page content

Internet → graph → matrix → stochastic matrix M(∑
j Mij = 1
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Random Surfer Process

What is wrong with it?

dangling pages act like sinks
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Success story #2 Google PageRank

http://infolab.stanford.edu/~backrub/google.html:

PageRank can be thought of as a model of user behavior. We assume
there is a “random surfer” who is given a web page at random and
keeps clicking on links, never hitting “back” but eventually gets bored
and starts on another random page.

• page is important if important pages link to it
– circular definition

• importance of a page is distributed evenly
• probability of being bored is 15%
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