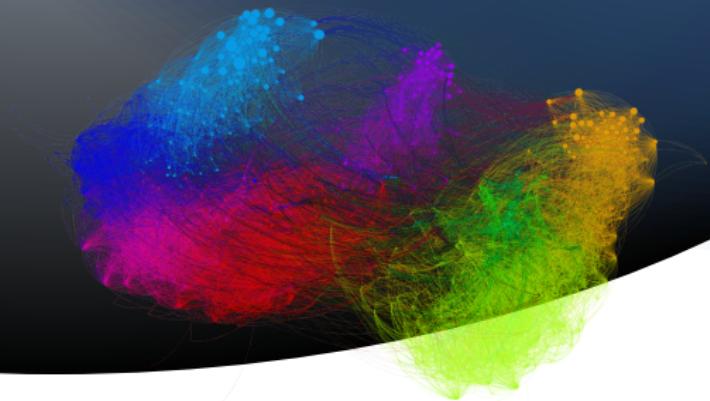


Graphs in Machine Learning


Google PageRank: Introduction

Random Surfer Model

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Andreas Krause,
Sylvain Kveton, Michael Kearns

Success story #2 Google PageRank

Objective: **Rank** all web pages (nodes on the graph) by how **many** other pages link to them and how **important** they are.

Success story #2 Google PageRank

Objective: **Rank** all web pages (nodes on the graph) by how **many** other pages link to them and how **important** they are.

basic PageRank is independent of query and the page content

Success story #2 Google PageRank

Objective: **Rank** all web pages (nodes on the graph) by how **many** other pages link to them and how **important** they are.

basic PageRank is independent of query and the page content

Internet

Success story #2 Google PageRank

Objective: **Rank** all web pages (nodes on the graph) by how **many** other pages link to them and how **important** they are.

basic PageRank is independent of query and the page content

Internet → graph

Success story #2 Google PageRank

Objective: **Rank** all web pages (nodes on the graph) by how **many** other pages link to them and how **important** they are.

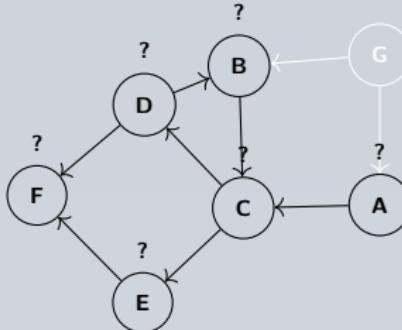
basic PageRank is independent of query and the page content

Internet → graph → matrix

Success story #2 Google PageRank

Objective: **Rank** all web pages (nodes on the graph) by how **many** other pages link to them and how **important** they are.

basic PageRank is independent of query and the page content

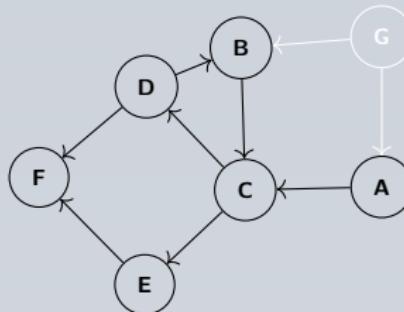

Internet \rightarrow graph \rightarrow matrix \rightarrow stochastic matrix \mathbf{M}
$$\left(\sum_j \mathbf{M}_{ij} = 1 \right)$$

Success story #2 Google PageRank

Objective: **Rank** all web pages (nodes on the graph) by how **many** other pages link to them and how **important** they are.

basic PageRank is independent of query and the page content

Internet \rightarrow graph \rightarrow matrix \rightarrow stochastic matrix \mathbf{M}
 $(\sum_j \mathbf{M}_{ij} = 1)$


Success story #2 Google PageRank

Objective: **Rank** all websites based on how many other pages link to them.

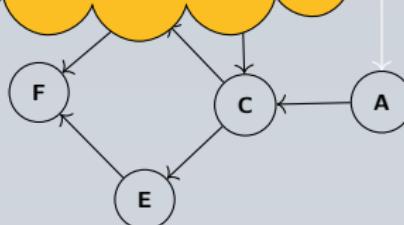
Random Surfer Process

basic PageRank is implemented using a random surfer

Internet \rightarrow graph \rightarrow matrix
 $(\sum_j M_{ij} = 1)$

Success story #2 Google PageRank

Objective: Rank all websites based on how many other pages link to them.


Random Surfer Process

basic PageRank is implemented in a few lines of Python code.

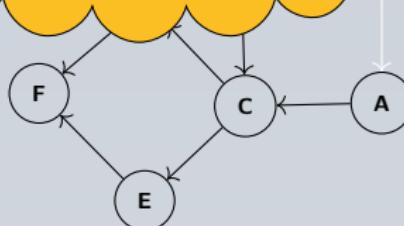
Internet \rightarrow graph \rightarrow matrix

$$\left(\sum_j M_{ij} = 1 \right)$$

What is wrong with it?

Success story #2 Google PageRank

Objective: Rank all websites based on how many other pages link to them.


Random Surfer Process

basic PageRank is implemented in a few lines of Python code

Internet \rightarrow graph \rightarrow matrix

$$\left(\sum_j M_{ij} = 1 \right)$$

What is wrong with it?

Success story #2 Google PageRank

<http://infolab.stanford.edu/~backrub/google.html>:

PageRank can be thought of as a model of user behavior. We assume there is a “random surfer” who is given a web page at random and keeps clicking on links, never hitting “back” but eventually gets bored and starts on another random page.

Success story #2 Google PageRank

<http://infolab.stanford.edu/~backrub/google.html>:

PageRank can be thought of as a model of user behavior. We assume there is a “random surfer” who is given a web page at random and keeps clicking on links, never hitting “back” but eventually gets bored and starts on another random page.

- page is **important** if **important** pages link **to** it

Success story #2 Google PageRank

<http://infolab.stanford.edu/~backrub/google.html>:

PageRank can be thought of as a model of user behavior. We assume there is a “random surfer” who is given a web page at random and keeps clicking on links, never hitting “back” but eventually gets bored and starts on another random page.

- page is **important** if **important** pages link **to** it
 - circular definition

Success story #2 Google PageRank

<http://infolab.stanford.edu/~backrub/google.html>:

PageRank can be thought of as a model of user behavior. We assume there is a “random surfer” who is given a web page at random and keeps clicking on links, never hitting “back” but eventually gets bored and starts on another random page.

- page is **important** if **important** pages link **to** it
 - circular definition
- importance of a page is distributed **evenly**

Success story #2 Google PageRank

<http://infolab.stanford.edu/~backrub/google.html>:

PageRank can be thought of as a model of user behavior. We assume there is a “random surfer” who is given a web page at random and keeps clicking on links, never hitting “back” but eventually gets bored and starts on another random page.

- page is **important** if **important** pages link **to** it
 - circular definition
- importance of a page is distributed **evenly**
- probability of being bored is 15%

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

<https://misovalko.github.io/mva-ml-graphs.html>