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Success story #2 Google PageRank

Objective: Rank all web pages (nodes on the graph) by how
many other pages link to them and how important they are.
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Objective: Rank all web pages (nodes on the graph) by how
many other pages link to them and how important they are.

basic PageRank is independent of query and the page content
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Success story #2 Google PageRank

Objective: Rank all web pages (nodes on the graph) by how
many other pages link to them and how important they are.
basic PageRank is independent of query and the page content

Internet — graph — matrix — stochastic matrix M

(ZM5=1)
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Success story #2 Google PageRank

http://infolab.stanford.edu/~backrub/google.html:

PageRank can be thought of as a model of user behavior. We assume
there is a “random surfer” who is given a web page at random and
keeps clicking on links, never hitting “back” but eventually gets bored
and starts on another random page.

Michal Valko — Graphs in Machine Learning


http://infolab.stanford.edu/~backrub/google.html

Success story #2 Google PageRank

http://infolab.stanford.edu/~backrub/google.html:

PageRank can be thought of as a model of user behavior. We assume
there is a “random surfer” who is given a web page at random and
keeps clicking on links, never hitting “back” but eventually gets bored
and starts on another random page.

= page is important if important pages link to it

Michal Valko — Graphs in Machine Learning


http://infolab.stanford.edu/~backrub/google.html

Success story #2 Google PageRank

http://infolab.stanford.edu/~backrub/google.html:

PageRank can be thought of as a model of user behavior. We assume
there is a “random surfer” who is given a web page at random and
keeps clicking on links, never hitting “back” but eventually gets bored
and starts on another random page.

= page is important if important pages link to it
— circular definition

Michal Valko — Graphs in Machine Learning


http://infolab.stanford.edu/~backrub/google.html

Success story #2 Google PageRank

http://infolab.stanford.edu/~backrub/google.html:

PageRank can be thought of as a model of user behavior. We assume
there is a “random surfer” who is given a web page at random and
keeps clicking on links, never hitting “back” but eventually gets bored
and starts on another random page.

= page is important if important pages link to it
— circular definition

= importance of a page is distributed evenly

Michal Valko — Graphs in Machine Learning


http://infolab.stanford.edu/~backrub/google.html

Success story #2 Google PageRank

http://infolab.stanford.edu/~backrub/google.html:

PageRank can be thought of as a model of user behavior. We assume
there is a “random surfer” who is given a web page at random and
keeps clicking on links, never hitting “back” but eventually gets bored
and starts on another random page.

= page is important if important pages link to it
— circular definition

= importance of a page is distributed evenly

= probability of being bored is 15%
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https://misovalko.github.io/mva-ml-graphs.html

