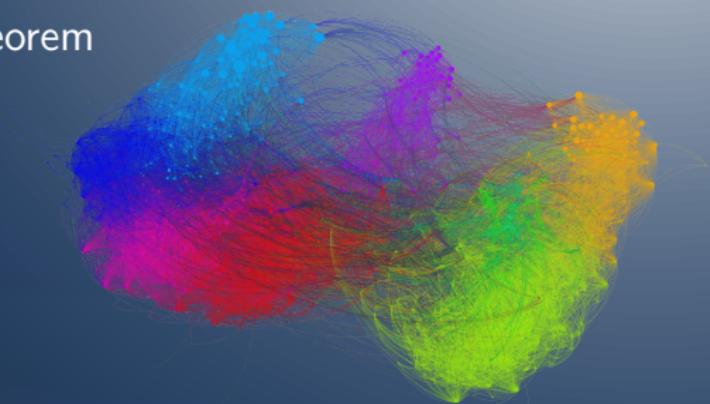


Graphs in Machine Learning


Google PageRank: Core Algorithm

Steady State and Perron's Theorem

Michal Valko

Inria & ENS Paris-Saclay, MVA

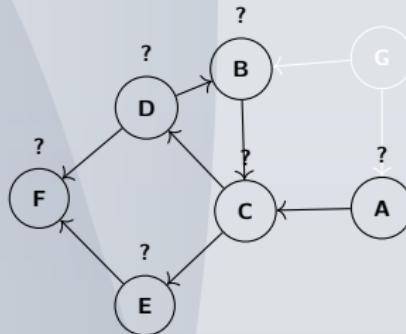
Partially based on material by: Andreas Krause,
Branislav Kveton, Michael Kearns

Success story #2 Google PageRank

Google matrix: $\mathbf{G} = (1 - p)\mathbf{M} + p \cdot \frac{1}{N} \mathbf{1}_{N \times N}$, where $p = 0.15$

Success story #2 Google PageRank

Google matrix: $\mathbf{G} = (1 - p)\mathbf{M} + p \cdot \frac{1}{N} \mathbf{1}_{N \times N}$, where $p = 0.15$

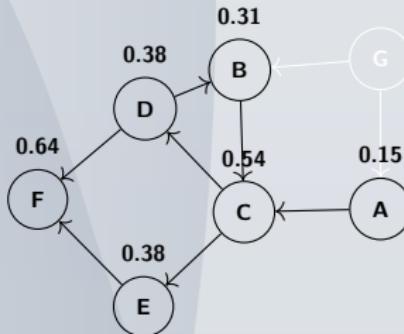

G is stochastic **why?** What is $\mathbf{G}\mathbf{a}$ for any \mathbf{a} ? We look for $\mathbf{G}\mathbf{v} = 1 \times \mathbf{v}$, steady-state vector, a right eigenvector with eigenvalue 1. **why?**

Success story #2 Google PageRank

Google matrix: $\mathbf{G} = (1 - p)\mathbf{M} + p \cdot \frac{1}{N} \mathbf{1}_{N \times N}$, where $p = 0.15$

G is stochastic **why?** What is $\mathbf{G}\mathbf{a}$ for any \mathbf{a} ? We look for $\mathbf{G}\mathbf{v} = 1 \times \mathbf{v}$, steady-state vector, a right eigenvector with eigenvalue 1. **why?**

Perron's theorem: Such \mathbf{v} exists and it is **unique** if the entries of \mathbf{G} are positive.

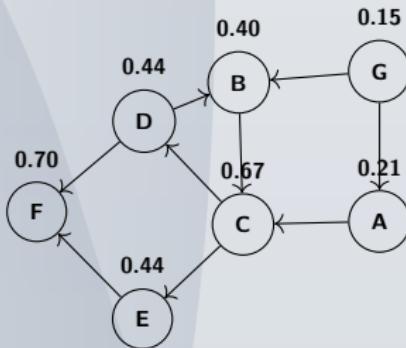


Success story #2 Google PageRank

Google matrix: $\mathbf{G} = (1 - p)\mathbf{M} + p \cdot \frac{1}{N} \mathbf{1}_{N \times N}$, where $p = 0.15$

G is stochastic **why?** What is $\mathbf{G}\mathbf{a}$ for any \mathbf{a} ? We look for $\mathbf{G}\mathbf{v} = 1 \times \mathbf{v}$, steady-state vector, a right eigenvector with eigenvalue 1. **why?**

Perron's theorem: Such \mathbf{v} exists and it is **unique** if the entries of \mathbf{G} are positive.



Success story #2 Google PageRank

Google matrix: $\mathbf{G} = (1 - p)\mathbf{M} + p \cdot \frac{1}{N} \mathbf{1}_{N \times N}$, where $p = 0.15$

G is stochastic **why?** What is $\mathbf{G}\mathbf{a}$ for any \mathbf{a} ? We look for $\mathbf{G}\mathbf{v} = 1 \times \mathbf{v}$, steady-state vector, a right eigenvector with eigenvalue 1. **why?**

Perron's theorem: Such \mathbf{v} exists and it is **unique** if the entries of \mathbf{G} are positive.

Michal Valko

`michal.valko@inria.fr`

Inria & ENS Paris-Saclay, MVA

`https://misovalko.github.io/mva-ml-graphs.html`