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Similarity Graphs

Similarity graph: G = (V, E) — (un)weighted

Task 1: For each pair i , j: define a similarity function sij

Task 2: Decide which edges to include

ε-neighborhood graphs – connect the points with the distances
smaller than ε

k-NN neighborhood graphs – take k nearest neighbors
fully connected graphs - consider everything

This is art (not much theory exists).
http://www.informatik.uni-hamburg.de/ML/contents/people/luxburg/
publications/Luxburg07_tutorial.pdf
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Similarity Graphs: ε-neighborhood graphs

Edges connect the points with the distances smaller than ε.

• distances are roughly on the same scale (ε)

• weights may not bring additional info → unweighted
• equivalent to: similarity function is at least ε
• theory [Penrose, 1999]: ε = ((log N)/N)d to guarantee

connectivity N nodes, d dimension

• practice: choose ε as the length of the longest edge in the
MST - minimum spanning tree

What could be the problem with this MST approach?

Anomalies can make ε too large.
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Similarity Graphs: k-nearest neighbors
graphs

Edges connect each node to its k-nearest neighbors.

• asymmetric (or directed graph)

– option OR: ignore the direction
– option AND: include if we have both direction (mutual

k-NN)

• how to choose k?

• k ≈ log N - suggested by asymptotics (practice: up to
√

N)

• for mutual k-NN we need to take larger k

• mutual k-NN does not connect regions with different
density

• why don’t we take k = N − 1?

– space and time
– manifold considerations (preserving local properties)
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Similarity Graphs: Fully connected graphs

Edges connect everything.

• choose a “meaningful” similarity function s
• default choice:

sij = exp
(
−‖xi − xj‖2

2σ2

)
• why the exponential decay with the distance?
• σ controls the width of the neighborhoods

– similar role as ε
– a practical rule of thumb: 10% of the average empirical std
– possibility: learn σi for each feature independently

• metric learning (a whole field of ML)
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Similarity Graphs: Important considerations

• calculate all sij and threshold has its limits (N ≈ 10000)

• graph construction step can be a huge bottleneck
• want to go higher? (we often have to)

– down-sample
– approximate NN

I LSH - Locally Sensitive Hashing
I CoverTrees
I Spectral sparsifiers

– sometime we may not need the graph (just the final results)
– yet another story: when we start with a large graph and

want to make it sparse (later in the course)

• these rules have little theoretical underpinning
• similarity is very data-dependent
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