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Similarity Graphs

Similarity graph: G = (V,€) — (un)weighted

Task 1: For each pair i, j: define a similarity function s;;
Task 2: Decide which edges to include
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Similarity Graphs
Similarity graph: G = (V, &) — (un)weighted

Task 1: For each pair i, j: define a similarity function s;;

Task 2: Decide which edges to include

e-neighborhood graphs — connect the points with the distances
smaller than ¢

k-NN neighborhood graphs — take k nearest neighbors

fully connected graphs - consider everything

This is art (not much theory exists).

http://www.informatik.uni-hamburg.de/ML /contents/people/luxburg/
publications/Luxburg07_ tutorial.pdf
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Similarity Graphs: c-neighborhood graphs

Edges connect the points with the distances smaller than ¢.

= distances are roughly on the same scale (&)
= weights may not bring additional info — unweighted
= equivalent to: similarity function is at least €

= theory [Penrose, 1999]: ¢ = ((log V)/N)? to guarantee
con neCt|V|ty N nodes, d dimension

= practice: choose ¢ as the length of the longest edge in the
MST - minimum spanning tree

What could be the problem with this MST approach?

Anomalies can make ¢ too large.
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Similarity Graphs: k-nearest neighbors
graphs

Edges connect each node to its k-nearest neighbors.
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Similarity Graphs: Fully connected graphs

Edges connect everything.
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= choose a “meaningful” similarity function s

- —IIxi — %2
Sjj = exp 552
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Similarity Graphs: Fully connected graphs

Edges connect everything.

= choose a “meaningful” similarity function s

N —llxi — x;l?
SIS T 5,7

= why the exponential decay with the distance?

= default choice:

= ¢ controls the width of the neighborhoods
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Similarity Graphs: Fully connected graphs

Edges connect everything.

= choose a “meaningful” similarity function s

2
l—x,
sy =enp L2 310)

= why the exponential decay with the distance?
= o controls the width of the neighborhoods
— similar role as e

— a practical rule of thumb: 10% of the average empirical std
— possibility: learn o; for each feature independently

default choice:
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Similarity Graphs: Fully connected graphs

Edges connect everything.

= choose a “meaningful” similarity function s

2
i —x,
oy = exp (L =50E)

= why the exponential decay with the distance?
= o controls the width of the neighborhoods

— similar role as e
— a practical rule of thumb: 10% of the average empirical std
— possibility: learn o; for each feature independently

default choice:
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Similarity Graphs: Important considerations

= calculate all sjj and threshold has its limits (N ~ 10000)
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Similarity Graphs: Important considerations

= calculate all s and threshold has its limits (/V ~ 10000)

= graph construction step can be a huge bottleneck
= want to go higher? (we often have to)

— down-sample
— approximate NN
» LSH - Locally Sensitive Hashing
> CoverTrees
» Spectral sparsifiers
— sometime we may not need the graph (just the final results)
— yet another story: when we start with a large graph and
want to make it sparse (later in the course)

= these rules have little theoretical underpinning

= similarity is very data-dependent
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