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Two (main) sources of graphs in ML

Natural graphs as models for networks
= given as an input

= discover interesting properties of the structure

Constructed graphs as nonparametric basis
= we create (learn) the similarity structure from flat data

= it's a tool (e.g., nonparametric regularizer) to encode
structural properties (e.g., independence, . ..)

Michal Valko — Graphs in Machine Learning



Natural graphs from social networks

= people and their
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Natural graphs from

= people and their
interactions

= structure is rather a
phenomena

= typical ML tasks
— advertising
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= people and their
interactions

= structure is rather a
phenomena

= typical ML tasks
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Natural graphs from

= people and their
interactions

= structure is rather a
phenomena

= typical ML tasks
— advertising

— link prediction (PYMK)

— find influential sources
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Natural graphs from utility and technology
networks

= power grids, roads, Internet,
sensor networks

Source: Guestrin et al. (2005) Berkeley's
Floating Sensor Network
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Natural graphs from utility and technology
networks

= power grids, roads, Internet,
sensor networks

= structure is either hand
designed or not

= typical ML tasks

— best routing under
unknown or variable Source: Guestrin et al. (2005) Berkeley's

costs Floating Sensor Network
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Natural graphs from utility and technology
networks

= power grids, roads, Internet,
sensor networks

= structure is either hand
designed or not

= typical ML tasks

— best routing under

unknown or variable
costs Floating Sensor Network

Source: Guestrin et al. (2005) Berkeley's

— identify the node of
interest
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Natural graphs from biological networks

= protein-protein interactions

— Graphs in Machine Learning
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Natural graphs from biological networks
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= protein-protein interactions

= gene regulatory networks
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Natural graphs from biological networks
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Natural graphs from biological networks

= protein-protein interactions
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Natural graphs from biological networks
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Constructed graphs from similarity networks

graph is not naturally given
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Constructed graphs from similarity networks

but we can construct it
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Constructed graphs from similarity networks

and use it as an abstraction

N

Source: Movie posters collage
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Constructed graphs from similarity networks

= vision
= audio \

= text

Movie similarity
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Constructed graphs from similarity networks

= vision
= audio
= text

= typical ML tasks o
— semi-supervised learning

— spectral clustering Movie similarity

— manifold learning
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What will you learn in the Graphs in ML
course?

Concepts, tools, and methods to work with graphs in ML.
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What will you learn in the Graphs in ML
course?

Concepts, tools, and methods to work with graphs in ML.
Specific applications of graphs in ML.

Theoretical toolbox to analyze graph-based algorithms.

How to tackle: large graphs, online setting, graph construction ...

One example: Online Semi-Supervised Face Recognition
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Online Semi-Supervised Face Recognition
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Robustness to outliers I

Source: Tenenbaum et al. (2000)
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Online Semi-Supervised Face Recognition

graph-based semi-supervised learning

SUPERVISED SEMI-SUPERVISED
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Online Semi-Supervised Face Recognition

graph is not given
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Source: Tenenbaum et al. (2000)
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Online Semi-Supervised Face Recognition

we will construct it!
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An example of a similarity graph over faces. The faces are vertices of the graph. The edges of the
graph connect similar faces. Labeled faces are outlined by thick solid lines

Source: Tenenbaum et al. (2000)
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Online Semi-Supervised Face Recognition

online learning - graph sparsification
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DEMO

second TD

see the demo:
https://misovalko.github.io/publications/kveton2009nipsdemo.officespace.mov

Michal Valko — Graphs in Machine Learning 10/1


https://misovalko.github.io/publications/kveton2009nipsdemo.officespace.mov

OSS FaceReco: Analysis
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Error of our Offline Online learning Quantiza-
solution learning error error tion error

Claim: When the regularization parameter is set as v, = (n 3/2) the
difference between the risks on labeled and all vertices decreases at the rate
of O(nl_l/2) (with a high probability)
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OSS FaceReco: Analysis
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Error of our Offline Online learning Quantiza-
solution learning error error tion error

Claim: When the regularization parameter is set as v, = Q(n1/4), the

average error between the offline and online HFS predictions decreases at
the rate of O(n~1/2)
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OSS FaceReco: Analysis
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Error of our Offline Online learning Quantiza-
solution learning error error tion error

Claim: When the regularization parameter is set as v, = Q(n'/8), and the
Laplacians L9 and L° and normalized, the average error between the online
and online quantized HFS predictions decreases at the rate of O(n~1/2)
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The distortion rate of online k-
center clustering is O(k—1/9),
o2 —2/d where d is dimension of the mamfold
”Lq —L HF X O(k / ) and k is the number of representa-
tive vertices
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MVA and Graphs: 2 courses

The two MVA graph courses offer complementary material.

Fall: Graphs in ML
this class
= focus on learning
= spectral clustering
= random walks
= graph Laplacian
= semi-supervised learning
= theoretical analyses
= online learning
= recommender systems

= graph neural networks
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MVA and Graphs: 2 courses

The two MVA graph courses offer complementary material.

Fall: Graphs in ML Late Fall: ALTeGraD
this class by Michalis Vazirgiannis

= focus on learning = dimensionality reduction
= spectral clustering = feature selection
= random walks = text mining
= graph Laplacian = graph mining
= semi-supervised learning = community mining
= theoretical analyses = graph generators
= online learning = graph-evaluation measures
= recommender systems = privacy in graph mining
= graph neural networks = big data
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Administrivia

8 lectures + 3 recitations (TDs)
Validation: grades from TDs (40%) + class project (60%)

Prerequisites: linear algebra, basic statistics
Language: English

Course website:
https://misovalko.github.io/mva-ml-graphs.html
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