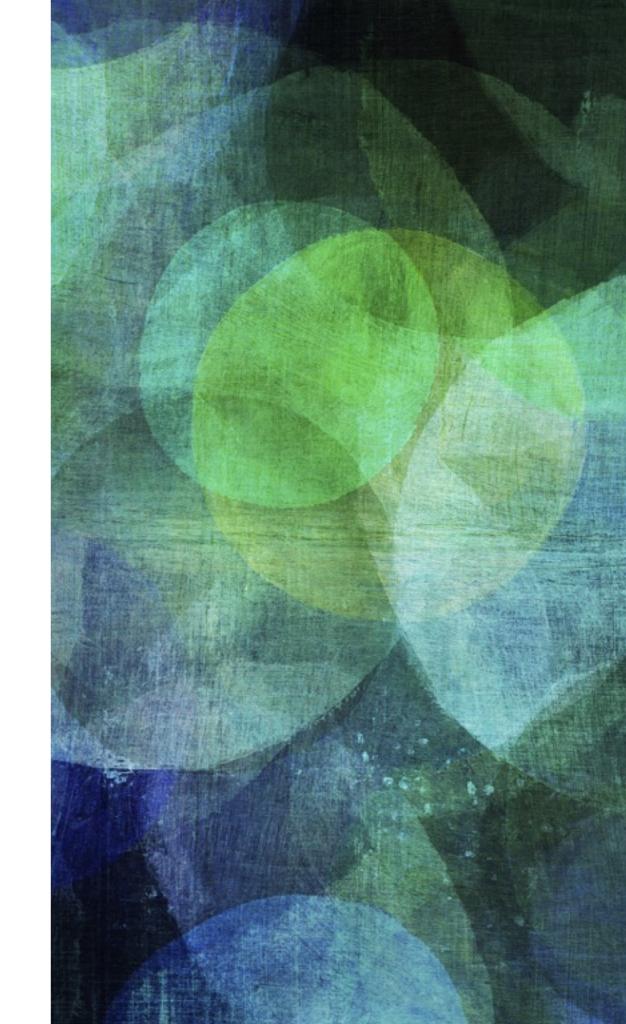
Carpentier, MV: Revealing Graph Bandits for Maximising Local Influence, AISTATS 2016

Wen, Kveton, MV: Influence Maximization with Semi-Bandit Feedback, (arXiv:1605.06593)

INFLUENCE MAXIMISATION

looking for the influential nodes while exploring the graph



HOW TO RULE THE WORLD?

: Influence the influential! :

JULY 18, 2016

Religion

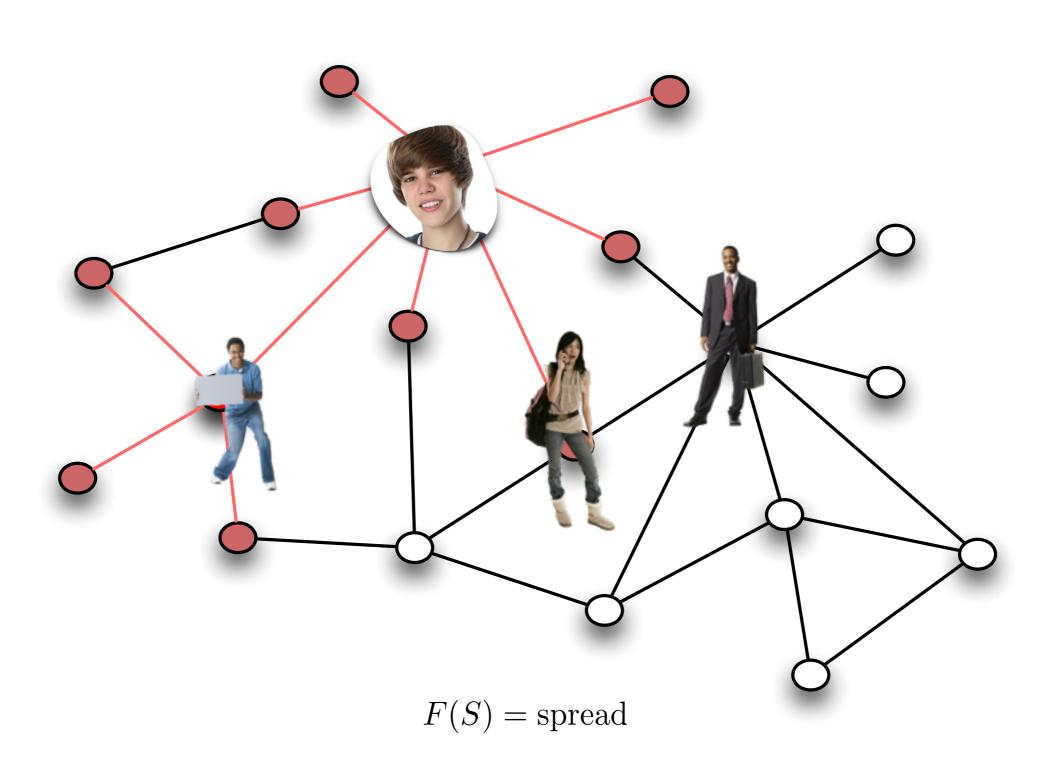
March 26, 2017

Politics

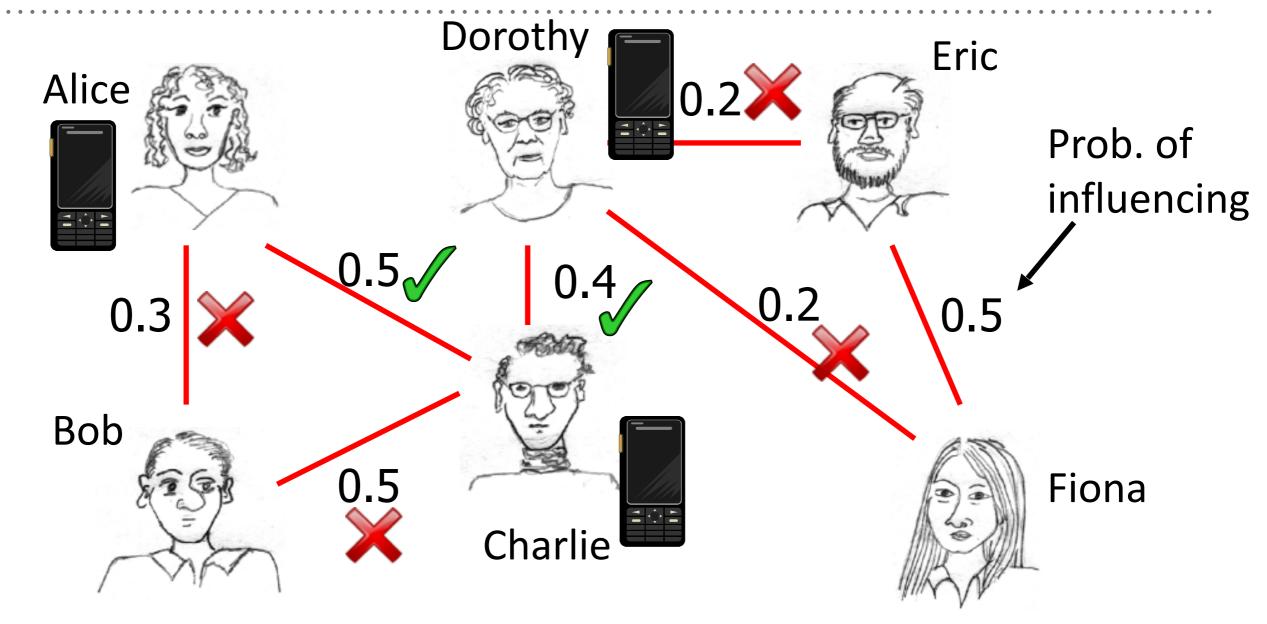
September 1, 2009

Culture

338 ET 200



EXAMPLE: INFLUENCE IN SOCIAL NETWORKS [KEMPE, KLEINBERG, TARDOS KDD '03]

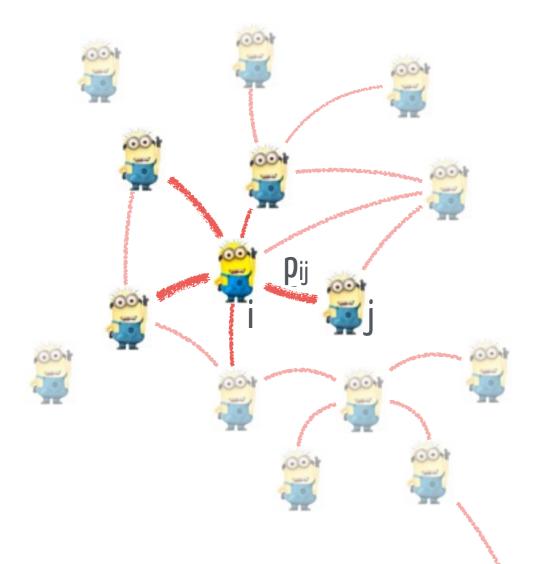


Who should get free cell phones?

V = {Alice,Bob,Charlie,Dorothy,Eric,Fiona}

F(A) = Expected number of people influenced when targeting A

REVEALING BANDITS FOR LOCAL INFLUENCE



Unknown (p_{ij})_{ij} — (symmetric) probability of influences

In each time step t = 1,, T

learner picks a node kt

environment reveals the set of influenced node Skt

Select influential people = Find the strategy maximising

$$L_T = \sum_{t=1}^{T} |S_{k_t,t}|$$

Why this is a bandit problem?

Case $T \leq N$

PERFORMANCE CRITERION

The number of expected influences of node **k** is by definition

$$r_k = \mathbb{E}\left[|S_{k,t}|\right] = \sum_{j \le N} p_{k,j}$$

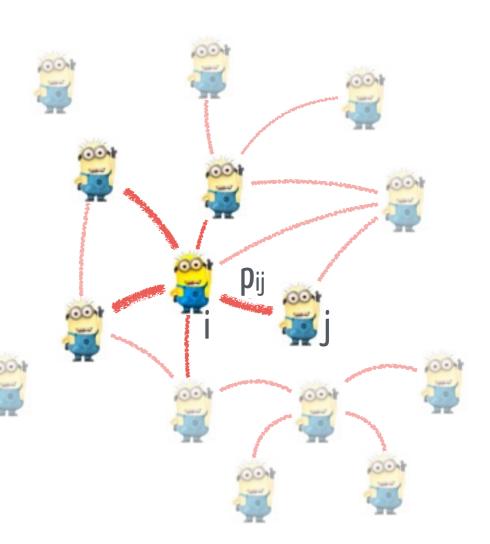
Oracle strategy always selects the best

$$k^* = \arg\max_{k} \mathbb{E}\left[\sum_{t=1}^{T} |S_{k,t}|\right] = \arg\max_{k} Tr_k$$

Expected regret of the oracle strategy

$$\mathbb{E}\left[L_T^{\star}\right] = Tr_{\star}$$

$$\mathbb{E}\left[R_{T}\right] = \mathbb{E}\left[L_{T}^{\star}\right] - \mathbb{E}\left[L_{T}\right]$$

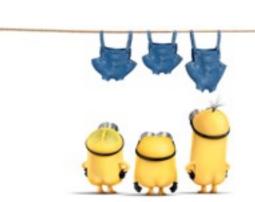


BASELINE

- We only receive |S| instead of S
- Can be mapped to multi-arm bandits
 - rewards are 0, ..., N
 - variance bounded with rkt
- We adapt MOSS to GraphMOSS
- Regret upper bound of GraphMOSS

$$\mathbb{E}\left[R_T\right] \le U \min\left(r_{\star}T, r_{\star}N + \sqrt{r_{\star}TN}\right)$$

matching lower bound



each node at least once

Crash course on stochastic bandits?

GRAPHMOSS FOR THE RESTRICTED SETTING

GraphMOSS

Input

d: the number of nodes

n: time horizon

Initialization

Sample each arm twice

Update $\widehat{r}_{k,2d}$, $\widehat{\sigma}_{k,2d}$, and $T_{k,2d} \leftarrow 2$, for $\forall k \leq d$

for
$$t = 2d + 1, ..., n$$
 do

$$C_{k,t} \leftarrow 2\widehat{\sigma}_{k,t} \sqrt{\frac{\max(\log(n/(dT_{k,t})),0)}{T_{k,t}}} + \frac{2\max(\log(n/(dT_{k,t})),0)}{T_{k,t}}, \text{ for } \forall k \leq d$$

 $k_t \leftarrow \arg\max_k \widehat{r}_{k,t} + C_{k,t}$

Sample node k_t and receive $|S_{k_t,t}|$

Update $\widehat{r}_{k,t+1}$, $\widehat{\sigma}_{k,t+1}$, and $T_{k,t+1}$, for $\forall k \leq d$

end for

BACK TO THE REAL SETTING

- Can we actually do better?
 - Well, not really.....
 - Minimax optimal rate is still the same
- But the bad cases are somehow pathological
 - isolated nodes
 - uncorrelated being influenced and being influential
 - Barabási–Albert etc tell us that the real-world graphs are not like that
- Let's think of some measure of difficulty
 - to define some non-degenerate cases
 - ideas?

DETECTABLE DIMENSION

- number of nodes we can efficiently extract in less than n rounds
- function D controls number of nodes given a gap

$$D(\Delta) = |\{i \le N : r_{\star}^{\circ} - r_{i}^{\circ} \le \Delta\}|$$

- D(r) = N for $r \ge r *$ and D(0) = number of most influenced nodes
- **Detectable dimension** $D* = D(\Delta*)$
- Detectable gap Δ * constants coming from the analysis and the Bernstein inequality

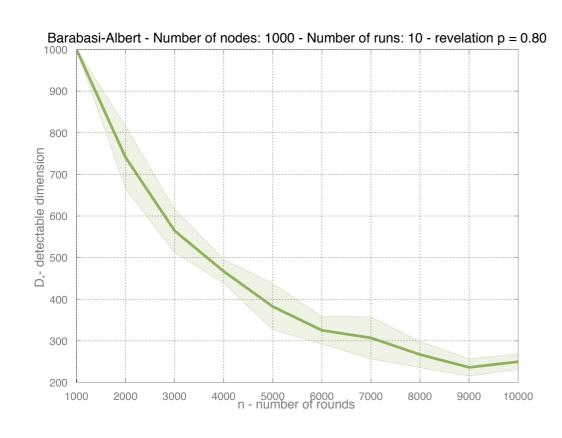
$$\Delta_{\star} = 16\sqrt{\frac{r_{\star}^{\circ} N \log (TN)}{T_{\star}}} + \frac{144N \log (TN)}{T_{\star}}$$

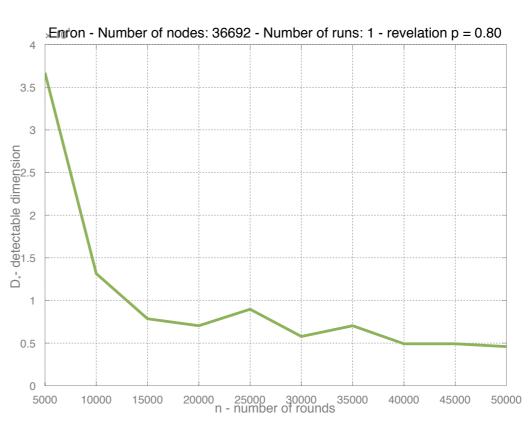
- Detectable horizon T*, smallest integer s.t. $T_{\star}r_{\star}^{\circ} \geq \sqrt{D_{\star}Tr_{\star}^{\circ}}$,
- Equivalently: D* corresponding to smallest T* such that

$$T_{\star}r_{\star}^{\circ} \ge \sqrt{D\left(16\sqrt{\frac{r_{\star}^{\circ}N\log\left(TN\right)}{T_{\star}}} + \frac{144N\log\left(TN\right)}{T_{\star}}\right)Tr_{\star}^{\circ}}$$

HOW DOES D* BEHAVE?

- For (easy, structured) star graphs $D_* = 1$ even for small n (big gain)
- For (difficult) empty graphs D*= N even for large T (no gain)
- In general: D* roughly decreases with n and it is small when D decreases quickly
- For n large enough D* is the number of the most influences nodes
- Example: D* for Barabási–Albert model & Enron graph as a function of T





BARE SOLUTION

BAndit REvelator: 2-phase algorithm

- global exploration phase
 - super-efficient exploration 😂
 - linear regret **☞** needs to be short!
 - extracts D* nodes
- bandit phase
 - uses a minimax-optimal bandit algorithm
 - GraphMOSS is a little brother of MOSS
 - has a "square root" regret on № nodes
- D* realizes the optimal trade-off!
 - different from exploration/exploitation tradeoff

BARE - BAndit REvelator

Input

d: the number of nodes

n: time horizon

$$T_{k,t} \leftarrow 0$$
, for $\forall k \leq d$
 $\widehat{r_{k,t}} \leftarrow 0$, for $\forall k \leq d$

$$t \leftarrow 1, \, \widehat{T}_{\star} \leftarrow 0, \, \widehat{D}_{\star,t} \leftarrow d, \, \widehat{\sigma}_{\star,1} \leftarrow d$$

while
$$t\left(\widehat{\sigma}_{\star,t} - 4\sqrt{d\log(dn)/t}\right) \leq \sqrt{\widehat{D}_{\star,t}n} \ \mathbf{do}$$

Influence a node at random (choose k_t uniformly at random) and get $S_{k_t,t}$ from this node

$$\widehat{r_{k,t+1}^{\circ}} \leftarrow \widehat{t_{t+1}} \widehat{r_{k,t}^{\circ}} + \frac{d}{t+1} S_{k_t,t}(k)$$

$$\widehat{\sigma}_{\star,t+1} \leftarrow \max_{k'} \sqrt{\widehat{r_{k',t+1}^{\circ}} + 8d \log(nd)/(t+1)}$$

$$w_{\star,t+1} \leftarrow 8\widehat{\sigma}_{\star,t+1} \sqrt{\frac{d \log(nd)}{t+1}} + \frac{24d \log(nd)}{t+1}$$

$$\widehat{D}_{\star,t+1} \leftarrow \left| \left\{ k : \max_{k'} \widehat{r_{k',t+1}^{\circ}} - \widehat{r_{k,t+1}^{\circ}} \le w_{\star,t+1} \right\} \right|$$

$$t \leftarrow t+1$$

end while

$$\widehat{T}_{\star} \leftarrow t$$
.

Bandit phase

Run minimax-optimal bandit algorithm on the $\widehat{D}_{\star,\widehat{T}_{\star}}$ chosen nodes (e.g., Algorithm 1)

EMPIRICAL RESULTS

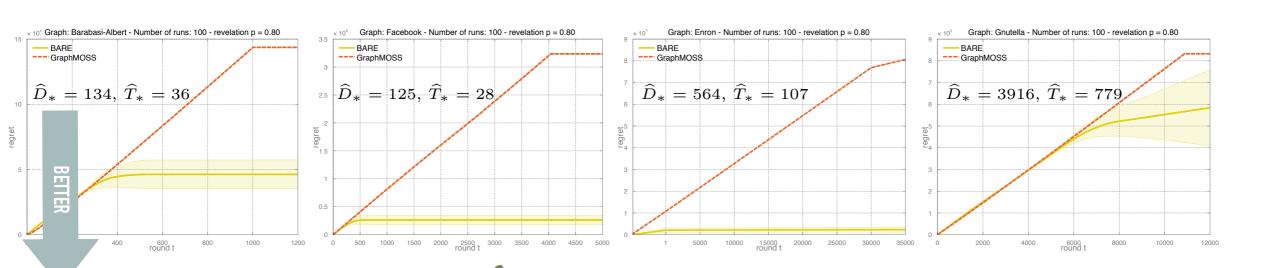
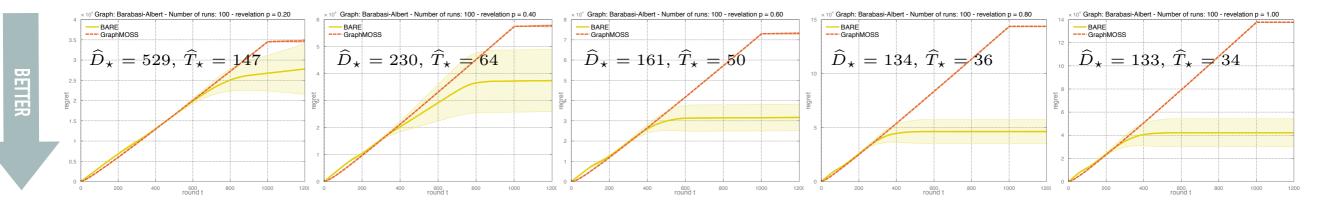


Figure 1: Left: Barabási-Albert. Mix et left: Facebook. Middle right: Enron. Right: Gry lla.

Enron and Facebook vs. Gnutella (decentralised)



Varying a (constant) probability of influence

REVEALING BANDITS: WHAT DO YOU MEAN?

Ignoring the structure again?

$$\widetilde{\mathcal{O}}\left(\sqrt{r_*TN}\right)$$

reward of the

best node

- BAndit REvelator: 2-phase algorithm
- global exploration phase
 - super-efficient exploration
 - linear regret needs to be short!
 - extracts D* nodes
- bandit phase
 - uses a minimax-optimal bandit algorithm (GraphMOSS)
 - has a "square root" regret on D* nodes
- D* realizes the optimal trade-off!
 - different from exploration/exploitation tradeoff

Regret of BARE

$$\mathcal{O}(\sqrt{r_{\star}TD_{\star}})$$

- D* detectable dimension (depends on T and the structure)
 - good case: star-shaped graphcan have D* = 1
 - bad case: a graph with many small cliques.
 - the worst case: all nodes are disconnected except 2

NEXT: GLOBAL INFLUENCE MODELS

- Kempe, Kleinberg, Tárdos, 2003, 2015: Independence Cascades, Linear Threshold models
 - global and multiple-source models
- Different feed-back models
 - Full bandit (only the number of influenced nodes)
 - Node-level semi-bandit (identities of influenced nodes)
 - Edge-level semi-bandit (identities of influenced edges)
 - Wen, Kveton, Valko, Vaswani, NIPS 2017
 - IMLinUCB with linear parametrization of edge weights
 - Regret analysis for general graphs, cascading model, and multiple-sources