

Graphs in Machine LearningSpectral Graph Sparsifiers: Theory

Effective Resistance and Spielman-Teng Algorithm

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Rob Fergus, Nikhil Srivastav Yiannis Koutis, Joshua Batson, Daniel Spielman

Rayleigh-Ritz gives:

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min rac{\mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\mathsf{T}} \mathbf{x}} \quad \mathsf{and} \quad \lambda_{\max} = \max rac{\mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x}}{\mathbf{x}^{\mathsf{T}} \mathbf{x}}$$

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f}$$

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{\mathsf{G}}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{\mathsf{H}}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{\mathsf{G}}\mathbf{f}$$

Eigenvalues are approximated well!

$$(1-\varepsilon)\lambda_i(G) \leq \lambda_i(H) \leq (1+\varepsilon)\lambda_i(G)$$

Using matrix ordering notation $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

Rayleigh-Ritz gives:

$$\lambda_{\min} = \min \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}} \quad \text{and} \quad \lambda_{\max} = \max \frac{\mathbf{x}^\mathsf{T} \mathbf{L} \mathbf{x}}{\mathbf{x}^\mathsf{T} \mathbf{x}}$$

What can we say about $\lambda_i(G)$ and $\lambda_i(H)$?

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f}$$

Eigenvalues are approximated well!

$$(1-\varepsilon)\lambda_i(G) \leq \lambda_i(H) \leq (1+\varepsilon)\lambda_i(G)$$

Using matrix ordering notation $(1 - \varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1 + \varepsilon)\mathbf{L}_G$

As a consequence, $\arg\min_{\mathbf{x}} \|\mathbf{L}_H\mathbf{x} - \mathbf{b}\| \approx \arg\min_{\mathbf{x}} \|\mathbf{L}_G\mathbf{x} - \mathbf{b}\|$

Proposition ([spielman2011graph; kyng2016framework])

There exists an algorithm that can construct a spectral ε -sparsifier

Proposition ([spielman2011graph; kyng2016framework])

There exists an algorithm that can construct a spectral ε -sparsifier

• with only $\mathcal{O}(n\log(n)/\varepsilon^2)$ edges

Proposition ([spielman2011graph; kyng2016framework])

There exists an algorithm that can construct a spectral ε -sparsifier

- with only $\mathcal{O}(n\log(n)/\varepsilon^2)$ edges
- in $\mathcal{O}(m\log^2(n))$ time and $\mathcal{O}(n\log(n)/\varepsilon^2)$ space

Proposition ([spielman2011graph; kyng2016framework])

There exists an algorithm that can construct a spectral ε -sparsifier

- with only $\mathcal{O}(n\log(n)/\varepsilon^2)$ edges
- in $\mathcal{O}(m\log^2(n))$ time and $\mathcal{O}(n\log(n)/\varepsilon^2)$ space
- a single pass over the data

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^\mathsf{T} (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\mathsf{T} \mathbf{L}_G \mathbf{f}$$
 (1)

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^\mathsf{T} (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\mathsf{T} \mathbf{L}_{\mathbf{G}} \mathbf{f}$$
 (1)

Preproc Time Space
$$\widehat{\mathbf{f}} = (\lambda \mathbf{L}_G + \mathbf{I})^{-1} \mathbf{y}$$
 0 $\mathcal{O}(m \log(n))$ $\mathcal{O}(m)$

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^\mathsf{T} (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^\mathsf{T} \mathbf{L}_G \mathbf{f}$$
 (1)

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^{\mathsf{T}} \mathbf{L}_{G} \mathbf{f}$$
 (1)

Large computational improvement

→ accuracy guarantees! [sadhanala2016graph]

Laplacian smoothing (denoising): given $\mathbf{y} \triangleq \mathbf{f}^* + \xi$ and G compute

$$\min_{\mathbf{f} \in \mathbb{R}^n} (\mathbf{f} - \mathbf{y})^{\mathsf{T}} (\mathbf{f} - \mathbf{y}) + \lambda \mathbf{f}^{\mathsf{T}} \mathbf{L}_{G} \mathbf{f}$$
 (1)

$$\begin{array}{cccc} & \mathsf{Preproc} & \mathsf{Time} & \mathsf{Space} \\ \widehat{\mathbf{f}} = (\lambda \mathbf{L}_G + \mathbf{I})^{-1} \mathbf{y} & 0 & \mathcal{O}(m \log(n)) & \textcolor{red}{\mathcal{O}(m)} \\ \widetilde{\mathbf{f}} = (\lambda \mathbf{L}_H + \mathbf{I})^{-1} \mathbf{y} & \mathcal{O}(m \log^2(n)) & \mathcal{O}(n \log^2(n)) & \mathcal{O}(n \log(n)) \end{array}$$

Large computational improvement

→ accuracy guarantees! [sadhanala2016graph]

Need to approximate spectrum only up to regularization level λ

Definition

An (ε, γ) -sparsifier of G is a reweighted subgraph H s.t.

$$(1 - \varepsilon)\mathbf{L}_{G} - \varepsilon\gamma\mathbf{I} \leq \mathbf{L}_{H} \leq (1 + \varepsilon)\mathbf{L}_{G} + \varepsilon\gamma\mathbf{I}$$
(2)

Definition

An (ε, γ) -sparsifier of G is a reweighted subgraph H s.t.

$$(1 - \varepsilon)\mathbf{L}_{G} - \varepsilon\gamma\mathbf{I} \leq \mathbf{L}_{H} \leq (1 + \varepsilon)\mathbf{L}_{G} + \varepsilon\gamma\mathbf{I}$$
 (2)

Mixed multiplicative / additive error

- large (i.e. $\geq \gamma$) directions reconstructed accurately
- small (i.e. $\leq \gamma$) directions uniformly approximated $(\gamma \mathbf{I})$

$$(1 - \varepsilon)\mathbf{L}_{G} - \varepsilon\gamma\mathbf{I} \leq \mathbf{L}_{H} \leq (1 + \varepsilon)\mathbf{L}_{G} + \varepsilon\gamma\mathbf{I}$$
 (2)

Mixed multiplicative / additive error

- large (i.e. $\geq \gamma$) directions reconstructed accurately
- small (i.e. $\leq \gamma$) directions uniformly approximated $(\gamma \mathbf{I})$

Adapted from Randomized Linear Algebra (RLA) community

L PSD matrix low-rank approx. [alaoui2014fast]

Definition

An (ε, γ) -sparsifier of G is a reweighted subgraph H s.t.

$$(1 - \varepsilon)\mathbf{L}_{G} - \varepsilon\gamma\mathbf{I} \leq \mathbf{L}_{H} \leq (1 + \varepsilon)\mathbf{L}_{G} + \varepsilon\gamma\mathbf{I}$$
 (2)

Mixed multiplicative / additive error

- large (i.e. $\geq \gamma$) directions reconstructed accurately
- small (i.e. $\leq \gamma$) directions uniformly approximated $(\gamma \mathbf{I})$

Adapted from Randomized Linear Algebra (RLA) community

\$\subset\$ PSD matrix low-rank approx. [alaoui2014fast]

RLA \to Graph: Improve over $\mathcal{O}(n \log n)$ exploiting regularization Graph \to RLA: Exploit \mathbf{L}_G structure for fast (ε, γ) -sparsification

Let us consider unweighted graphs: $w_{ij} \in \{0,1\}$

$$\mathbf{L}_{G} = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij}$$

Let us consider unweighted graphs: $w_{ij} \in \{0,1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j) (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j)^{\mathsf{T}}$$

Let us consider unweighted graphs: $w_{ij} \in \{0,1\}$

$$\mathbf{L}_{G} = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\boldsymbol{\delta}_{i} - \boldsymbol{\delta}_{j}) (\boldsymbol{\delta}_{i} - \boldsymbol{\delta}_{j})^{\mathsf{T}} = \sum_{e \in E} \mathbf{b}_{e} \mathbf{b}_{e}^{\mathsf{T}}$$

Let us consider unweighted graphs: $w_{ij} \in \{0, 1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j) (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j)^{\mathsf{T}} = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}}$$

We look for a subgraph H

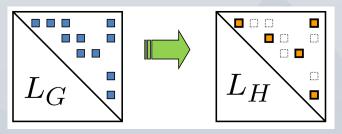
$$\mathbf{L}_{H} = \sum_{e \in E} s_{e} \mathbf{b}_{e} \mathbf{b}_{e}^{\mathsf{T}}$$

Let us consider unweighted graphs: $w_{ij} \in \{0, 1\}$

$$\mathbf{L}_G = \sum_{ij} w_{ij} \mathbf{L}_{ij} = \sum_{ij \in E} \mathbf{L}_{ij} = \sum_{ij \in E} (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j) (\boldsymbol{\delta}_i - \boldsymbol{\delta}_j)^{\mathsf{T}} = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}}$$

We look for a subgraph H

$$\mathbf{L}_H = \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}}$$
 where s_e is a new weight of edge e



https://math.berkeley.edu/~nikhil/

We want
$$(1-\varepsilon)\mathbf{L}_G \leq \mathbf{L}_H \leq (1+\varepsilon)\mathbf{L}_G$$

We want
$$(1-\varepsilon)\mathbf{L}_{G} \leq \mathbf{L}_{H} \leq (1+\varepsilon)\mathbf{L}_{G}$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in F} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$

We want
$$(1-\varepsilon)\mathbf{L}_G \leq \mathbf{L}_H \leq (1+\varepsilon)\mathbf{L}_G$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

We want
$$(1-\varepsilon)\mathbf{L}_{G} \leq \mathbf{L}_{H} \leq (1+\varepsilon)\mathbf{L}_{G}$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget L, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^{\mathsf{T}}$$

We want
$$(1-\varepsilon)\mathbf{L}_{G} \leq \mathbf{L}_{H} \leq (1+\varepsilon)\mathbf{L}_{G}$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget L, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\mathsf{T}$$
 find s, s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{A}$

We want
$$(1-\varepsilon)\mathbf{L}_G \leq \mathbf{L}_H \leq (1+\varepsilon)\mathbf{L}_G$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget L, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{A}$

Same as, given
$$\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}}$$

We want
$$(1-\varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1+\varepsilon)\mathbf{L}_G$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget L, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\mathsf{T}$$
 find s, s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{A}$

Same as, given
$$\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{I}$

We want
$$(1-\varepsilon)\mathbf{L}_{G} \leq \mathbf{L}_{H} \leq (1+\varepsilon)\mathbf{L}_{G}$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget L, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{A}$

Same as, given
$$\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{I}$

How to get it?

We want
$$(1-\varepsilon)\mathbf{L}_{G} \leq \mathbf{L}_{H} \leq (1+\varepsilon)\mathbf{L}_{G}$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget L, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{A}$

Same as, given
$$\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{I}$

How to get it? $\mathbf{v}_e \leftarrow \mathbf{A}^{-1/2} \mathbf{a}_e$

We want
$$(1-\varepsilon)\mathbf{L}_G \preceq \mathbf{L}_H \preceq (1+\varepsilon)\mathbf{L}_G$$

Equivalent, given
$$\mathbf{L}_G = \sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^\mathsf{T}$$
 find \mathbf{s} , \mathbf{s} .t. $\mathbf{L}_G \preceq \sum_{e \in E} s_e \mathbf{b}_e \mathbf{b}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{L}_G$

Forget L, given
$$\mathbf{A} = \sum_{e \in E} \mathbf{a}_e \mathbf{a}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{A} \preceq \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{A}$

Same as, given
$$\mathbf{I} = \sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^\mathsf{T}$$
 find \mathbf{s} , s.t. $\mathbf{I} \preceq \sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^\mathsf{T} \preceq \kappa \cdot \mathbf{I}$

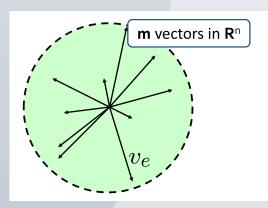
How to get it? $\mathbf{v}_e \leftarrow \mathbf{A}^{-1/2} \mathbf{a}_e$

Then
$$\sum_{e \in E} s_e \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} \approx \mathbf{I} \iff \sum_{e \in E} s_e \mathbf{a}_e \mathbf{a}_e^{\mathsf{T}} \approx \mathbf{A}$$

multiplying by $A^{1/2}$ on both sides

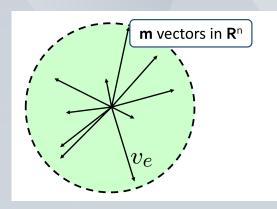
How does $\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} = \mathbf{I}$ look like geometrically?

How does $\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} = \mathbf{I}$ look like geometrically?



Decomposition of identity: $\forall \mathbf{u}$ (unit vector): $\sum_{e \in \mathcal{E}} (\mathbf{u}^{\mathsf{T}} \mathbf{v}_e)^2 = 1$

How does $\sum_{e \in E} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} = \mathbf{I}$ look like geometrically?

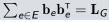


Decomposition of identity:
$$\forall \mathbf{u}$$
 (unit vector): $\sum_{e \in E} (\mathbf{u}^{\mathsf{T}} \mathbf{v}_e)^2 = 1$

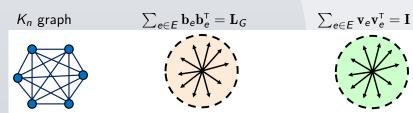
https://math.berkeley.edu/~nikhil/

Example: What happens with K_n ?

Example: What happens with K_n ?

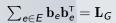


Example: What happens with K_n ?



It is already isotropic! (looks like a sphere)

Example: What happens with K_n ?



It is already isotropic! (looks like a sphere)

rescaling $\mathbf{v}_{e} = \mathbf{L}^{-1/2}\mathbf{b}_{e}$ does not change the shape

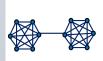
https://math.berkeley.edu/~nikhil/

Example: What happens with a dumbbell?

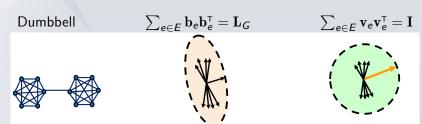
Example: What happens with a dumbbell?

$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}} = \mathbf{L}_{\mathcal{G}}$$

$$\sum_{e \in \mathcal{E}} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} = \mathbf{I}$$



Example: What happens with a dumbbell?

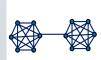


The vector corresponding to the link gets stretched!

Example: What happens with a dumbbell?

Dumbbell

$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}} = \mathbf{L}_{\mathsf{G}}$$



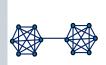
The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

Example: What happens with a dumbbell?

$$\sum_{e \in E} \mathbf{b}_e \mathbf{b}_e^{\mathsf{T}} = \mathbf{L}_{\mathsf{G}}$$

$$\sum_{e \in F} \mathbf{v}_e \mathbf{v}_e^{\mathsf{T}} = \mathbf{I}$$



The vector corresponding to the link gets stretched!

because this transformation makes all the directions important

rescaling reveals the vectors that are critica

https://math.berkeley.edu/~nikhil/

Michal Valko

michal.valko@inria.fr Inria & ENS Paris-Saclay, MVA

https://misovalko.github.io/mva-ml-graphs.html