

Graphs in Machine Learning Cut Graph Sparsifiers

Benczur-Karger Algorithm

Michal Valko

Inria & ENS Paris-Saclay, MVA

Partially based on material by: Rob Fergus, Nikhil Srivastav Yiannis Koutis, Joshua Batson, Daniel Spielman

Define G and H are $(1 \pm \varepsilon)$ -cut similar when $\forall S$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

Define G and H are $(1 \pm \varepsilon)$ -cut similar when $\forall S$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

Why did they care?

Define G and H are $(1 \pm \varepsilon)$ -cut similar when $\forall S$

$$(1-\varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1+\varepsilon)\operatorname{cut}_H(S)$$

Why did they care? faster mincut/maxflow

Define G and H are $(1 \pm \varepsilon)$ -cut similar when $\forall S$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

Why did they care? faster mincut/maxflow

Is this always possible?

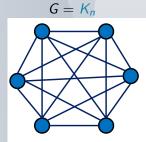
Define G and H are $(1 \pm \varepsilon)$ -cut similar when $\forall S$

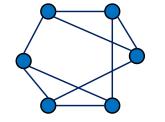
$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

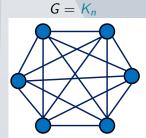
Why did they care? faster mincut/maxflow

Is this always possible? Benczúr and Karger (1996): Yes!

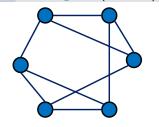
 $\forall \varepsilon \ \exists \ (1+\varepsilon)$ -cut similar H with $\mathcal{O}(n\log n/\varepsilon^2)$ edges s.t. $E_H \subseteq E$ and computable in $\mathcal{O}(m\log^3 n + m\log n/\varepsilon^2)$ time n nodes, m edges







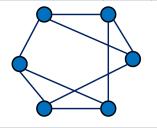
H = d-regular (random)



How many edges?

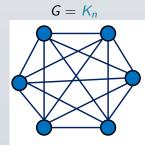


$$H = d$$
-regular (random)

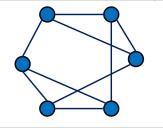


How many edges?

$$|E_G| = \mathcal{O}(n^2)$$



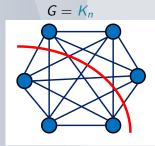
$$H = d$$
-regular (random)

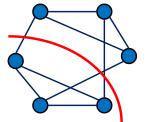


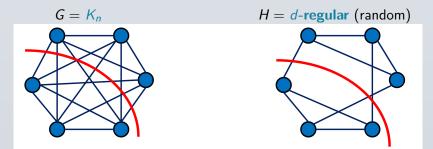
How many edges?

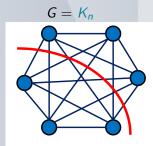
$$|E_G| = \mathcal{O}(n^2)$$

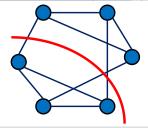
$$|E_H| = \mathcal{O}(dn)$$



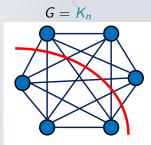


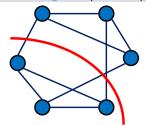




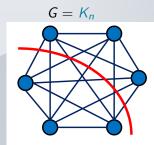


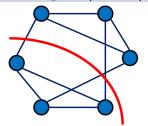
$$w_G(\delta S) = |S| \cdot |\overline{S}|$$





$$w_G(\delta S) = |S| \cdot |\overline{S}|$$
 $w_H(\delta S) \approx \frac{d}{n} \cdot |S| \cdot |\overline{S}|$
 $\forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx \frac{n}{d}$

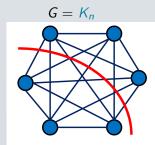


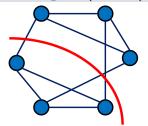


What are the cut weights for any 5?

$$w_{G}(\delta S) = |S| \cdot |\overline{S}| \qquad w_{H}(\delta S) \approx \frac{d}{n} \cdot |S| \cdot |\overline{S}|$$
$$\forall S \subset V : \frac{w_{G}(\delta S)}{w_{H}(\delta S)} \approx \frac{n}{d}$$

Could be large :(

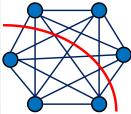




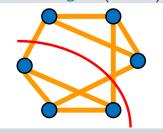
What are the cut weights for any *S*?

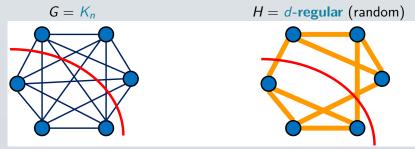
$$w_{G}(\delta S) = |S| \cdot |\overline{S}| \qquad w_{H}(\delta S) \approx \frac{d}{n} \cdot |S| \cdot |\overline{S}|$$
$$\forall S \subset V : \frac{w_{G}(\delta S)}{w_{H}(\delta S)} \approx \frac{n}{d}$$

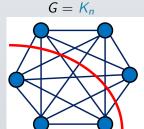
Could be large : (What to do?

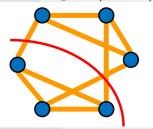


H = d-regular (random)

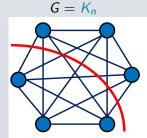


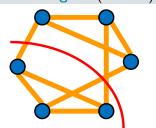




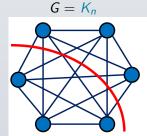


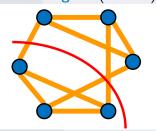
$$w_G(\delta S) = |S| \cdot |\overline{S}|$$





$$\begin{split} w_G(\delta S) &= |S| \cdot |\overline{S}| & w_H(\delta S) \approx \frac{d}{n} \cdot \frac{n}{d} \cdot |S| \cdot |\overline{S}| \\ \forall S \subset V : \frac{w_G(\delta S)}{w_H(\delta S)} \approx 1 \end{split}$$





What are the cut weights for any *S*?

$$w_{G}(\delta S) = |S| \cdot |\overline{S}| \qquad w_{H}(\delta S) \approx \frac{d}{n} \cdot \frac{n}{d} \cdot |S| \cdot |\overline{S}|$$
$$\forall S \subset V : \frac{w_{G}(\delta S)}{w_{H}(\delta S)} \approx 1$$

Benczúr & Karger: Can find such H quickly for any G!

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^\mathsf{T} \mathbf{L}_G \mathbf{f} =$

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

Recall if
$$\mathbf{f} \in \{0,1\}^n$$
 represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

becomes

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f}$$

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

becomes

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f}$$

If we ask this only for $\mathbf{f} \in \{0,1\}^n \to (1+\varepsilon)$ -cut similar combinatorial

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1-\varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1+\varepsilon)\operatorname{cut}_H(S)$$

becomes

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f}$$

If we ask this only for $\mathbf{f} \in \{0,1\}^n \to (1+\varepsilon)$ -cut similar combinatorial Benczúr & Karger (1996)

If we ask this for all $\mathbf{f} \in \mathbb{R}^n \to$

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

becomes

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{\mathsf{H}}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{\mathsf{G}}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{\mathsf{H}}\mathbf{f}$$

If we ask this only for $\mathbf{f} \in \{0,1\}^n o (1+arepsilon)$ -cut similar combinatorial Benezúr & Karger (1996)

If we ask this for all $\mathbf{f} \in \mathbb{R}^n \to (1+\varepsilon)$ -spectrally similar

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

becomes

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f}$$

If we ask this only for $\mathbf{f} \in \{0,1\}^n \to (1+\varepsilon)$ -cut similar combinatorial Benezur & Karger (1996)

If we ask this for all $\mathbf{f} \in \mathbb{R}^n \to (1+\varepsilon)$ -spectrally similar Spielman & Teng (2004)

Spectral sparsifiers are stronger!

Recall if $\mathbf{f} \in \{0,1\}^n$ represents S then $\mathbf{f}^{\mathsf{T}} \mathbf{L}_G \mathbf{f} = \mathsf{cut}_G(S)$

$$(1 - \varepsilon)\operatorname{cut}_H(S) \le \operatorname{cut}_G(S) \le (1 + \varepsilon)\operatorname{cut}_H(S)$$

becomes

$$(1 - \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f} \leq \mathbf{f}^{\mathsf{T}}\mathbf{L}_{G}\mathbf{f} \leq (1 + \varepsilon)\mathbf{f}^{\mathsf{T}}\mathbf{L}_{H}\mathbf{f}$$

If we ask this only for $\mathbf{f} \in \{0,1\}^n o (1+arepsilon)$ -cut similar combinatorial Benezúr & Karger (1996)

If we ask this for all $\mathbf{f} \in \mathbb{R}^n \to (1+\varepsilon)$ -spectrally similar

Spectral sparsifiers are stronger!

but checking for spectral similarity is easier

Michal Valko

michal.valko@inria.fr Inria & ENS Paris-Saclay, MVA

https://misovalko.github.io/mva-ml-graphs.html